ANDROID: fscrypt: add support for hardware-wrapped keys

Add support for hardware-wrapped keys to fscrypt.  Hardware-wrapped keys
are inline encryption keys which are only present in kernel memory in
ephemerally-wrapped form, and which can only be unwrapped by dedicated
hardware.  Such keys are protected from certain attacks, such as cold
boot attacks.  For more information, see the "Hardware-wrapped keys"
section of Documentation/block/inline-encryption.rst.

To support hardware-wrapped keys in fscrypt, we allow the fscrypt master
keys to be hardware-wrapped, and we allow encryption policies to be
flagged as needing a hardware-wrapped key.  File contents encryption is
done by passing the wrapped key to the inline encryption hardware via
blk-crypto.  Other fscrypt operations such as filenames encryption
continue to be done by the kernel, using the "software secret" which the
hardware derives.

Note that this feature doesn't require any filesystem-specific changes.
However it does depend on inline encryption support, and thus currently
it is only applicable to ext4 and f2fs, not to ubifs or CephFS.

This is a reworked version of a patch which was temporily reverted by
https://android-review.googlesource.com/c/kernel/common/+/1867364, and
which originated from
https://android-review.googlesource.com/c/kernel/common/+/1200864.
This is based on a version of this patch that I've proposed upstream
(https://lore.kernel.org/r/20211021181608.54127-4-ebiggers@kernel.org),
but by necessity it preserves the existing UAPI and on-disk format which
Android expects.  I also dropped the changes to the documentation file.

Bug: 160883801
Change-Id: If4bb83f1188a5863184717c04cb8a064dc4ea168
Signed-off-by: Eric Biggers <ebiggers@google.com>
(cherry picked from commit 2fd53f809834904a364bd65a51c1a606185958dc)
This commit is contained in:
Eric Biggers
2021-10-21 11:54:27 -07:00
parent 3d489f629e
commit 4887dd4fe3
7 changed files with 255 additions and 46 deletions

View File

@@ -27,6 +27,27 @@
*/ */
#define FSCRYPT_MIN_KEY_SIZE 16 #define FSCRYPT_MIN_KEY_SIZE 16
/* Maximum size of a standard fscrypt master key */
#define FSCRYPT_MAX_STANDARD_KEY_SIZE 64
/* Maximum size of a hardware-wrapped fscrypt master key */
#define FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE
/*
* Maximum size of an fscrypt master key across both key types.
* This should just use max(), but max() doesn't work in a struct definition.
*/
#define FSCRYPT_MAX_ANY_KEY_SIZE \
(FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE > FSCRYPT_MAX_STANDARD_KEY_SIZE ? \
FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE : FSCRYPT_MAX_STANDARD_KEY_SIZE)
/*
* FSCRYPT_MAX_KEY_SIZE is defined in the UAPI header, but the addition of
* hardware-wrapped keys has made it misleading as it's only for standard keys.
* Don't use it in kernel code; use one of the above constants instead.
*/
#undef FSCRYPT_MAX_KEY_SIZE
#define FSCRYPT_CONTEXT_V1 1 #define FSCRYPT_CONTEXT_V1 1
#define FSCRYPT_CONTEXT_V2 2 #define FSCRYPT_CONTEXT_V2 2
@@ -335,7 +356,8 @@ void fscrypt_destroy_hkdf(struct fscrypt_hkdf *hkdf);
/* inline_crypt.c */ /* inline_crypt.c */
#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
int fscrypt_select_encryption_impl(struct fscrypt_info *ci); int fscrypt_select_encryption_impl(struct fscrypt_info *ci,
bool is_hw_wrapped_key);
static inline bool static inline bool
fscrypt_using_inline_encryption(const struct fscrypt_info *ci) fscrypt_using_inline_encryption(const struct fscrypt_info *ci)
@@ -345,10 +367,16 @@ fscrypt_using_inline_encryption(const struct fscrypt_info *ci)
int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key, int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
const u8 *raw_key, const u8 *raw_key,
unsigned int raw_key_size,
bool is_hw_wrapped,
const struct fscrypt_info *ci); const struct fscrypt_info *ci);
void fscrypt_destroy_inline_crypt_key(struct fscrypt_prepared_key *prep_key); void fscrypt_destroy_inline_crypt_key(struct fscrypt_prepared_key *prep_key);
int fscrypt_derive_sw_secret(struct super_block *sb, const u8 *wrapped_key,
unsigned int wrapped_key_size,
u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE]);
/* /*
* Check whether the crypto transform or blk-crypto key has been allocated in * Check whether the crypto transform or blk-crypto key has been allocated in
* @prep_key, depending on which encryption implementation the file will use. * @prep_key, depending on which encryption implementation the file will use.
@@ -359,7 +387,7 @@ fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
{ {
/* /*
* The two smp_load_acquire()'s here pair with the smp_store_release()'s * The two smp_load_acquire()'s here pair with the smp_store_release()'s
* in fscrypt_prepare_inline_crypt_key() and fscrypt_prepare_key(). * in fscrypt_prepare_inline_crypt_key() and __fscrypt_prepare_key().
* I.e., in some cases (namely, if this prep_key is a per-mode * I.e., in some cases (namely, if this prep_key is a per-mode
* encryption key) another task can publish blk_key or tfm concurrently, * encryption key) another task can publish blk_key or tfm concurrently,
* executing a RELEASE barrier. We need to use smp_load_acquire() here * executing a RELEASE barrier. We need to use smp_load_acquire() here
@@ -372,7 +400,8 @@ fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
#else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */ #else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
static inline int fscrypt_select_encryption_impl(struct fscrypt_info *ci) static inline int fscrypt_select_encryption_impl(struct fscrypt_info *ci,
bool is_hw_wrapped_key)
{ {
return 0; return 0;
} }
@@ -385,7 +414,8 @@ fscrypt_using_inline_encryption(const struct fscrypt_info *ci)
static inline int static inline int
fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key, fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
const u8 *raw_key, const u8 *raw_key, unsigned int raw_key_size,
bool is_hw_wrapped,
const struct fscrypt_info *ci) const struct fscrypt_info *ci)
{ {
WARN_ON(1); WARN_ON(1);
@@ -397,6 +427,15 @@ fscrypt_destroy_inline_crypt_key(struct fscrypt_prepared_key *prep_key)
{ {
} }
static inline int
fscrypt_derive_sw_secret(struct super_block *sb, const u8 *wrapped_key,
unsigned int wrapped_key_size,
u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE])
{
fscrypt_warn(NULL, "kernel doesn't support hardware-wrapped keys");
return -EOPNOTSUPP;
}
static inline bool static inline bool
fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key, fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
const struct fscrypt_info *ci) const struct fscrypt_info *ci)
@@ -413,11 +452,23 @@ fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
struct fscrypt_master_key_secret { struct fscrypt_master_key_secret {
/* /*
* For v2 policy keys: HKDF context keyed by this master key. * The KDF with which subkeys of this key can be derived.
* For v1 policy keys: not set (hkdf.hmac_tfm == NULL). *
* For v1 policy keys, this isn't applicable and won't be set.
* Otherwise, this KDF will be keyed by this master key if
* ->is_hw_wrapped=false, or by the "software secret" that hardware
* derived from this master key if ->is_hw_wrapped=true.
*/ */
struct fscrypt_hkdf hkdf; struct fscrypt_hkdf hkdf;
/*
* True if this key is a hardware-wrapped key; false if this key is a
* standard key (i.e. a "software key"). For v1 policy keys this will
* always be false, as v1 policy support is a legacy feature which
* doesn't support newer functionality such as hardware-wrapped keys.
*/
bool is_hw_wrapped;
/* /*
* Size of the raw key in bytes. This remains set even if ->raw was * Size of the raw key in bytes. This remains set even if ->raw was
* zeroized due to no longer being needed. I.e. we still remember the * zeroized due to no longer being needed. I.e. we still remember the
@@ -425,8 +476,14 @@ struct fscrypt_master_key_secret {
*/ */
u32 size; u32 size;
/* For v1 policy keys: the raw key. Wiped for v2 policy keys. */ /*
u8 raw[FSCRYPT_MAX_KEY_SIZE]; * The raw key which userspace provided, when still needed. This can be
* either a standard key or a hardware-wrapped key, as indicated by
* ->is_hw_wrapped. In the case of a standard, v2 policy key, there is
* no need to remember the raw key separately from ->hkdf so this field
* will be zeroized as soon as ->hkdf is initialized.
*/
u8 raw[FSCRYPT_MAX_ANY_KEY_SIZE];
} __randomize_layout; } __randomize_layout;

View File

@@ -4,7 +4,9 @@
* Function"), aka RFC 5869. See also the original paper (Krawczyk 2010): * Function"), aka RFC 5869. See also the original paper (Krawczyk 2010):
* "Cryptographic Extraction and Key Derivation: The HKDF Scheme". * "Cryptographic Extraction and Key Derivation: The HKDF Scheme".
* *
* This is used to derive keys from the fscrypt master keys. * This is used to derive keys from the fscrypt master keys (or from the
* "software secrets" which hardware derives from the fscrypt master keys, in
* the case that the fscrypt master keys are hardware-wrapped keys).
* *
* Copyright 2019 Google LLC * Copyright 2019 Google LLC
*/ */

View File

@@ -13,6 +13,7 @@
*/ */
#include <linux/blk-crypto.h> #include <linux/blk-crypto.h>
#include <linux/blk-crypto-profile.h>
#include <linux/blkdev.h> #include <linux/blkdev.h>
#include <linux/buffer_head.h> #include <linux/buffer_head.h>
#include <linux/sched/mm.h> #include <linux/sched/mm.h>
@@ -65,7 +66,8 @@ static unsigned int fscrypt_get_dun_bytes(const struct fscrypt_info *ci)
} }
/* Enable inline encryption for this file if supported. */ /* Enable inline encryption for this file if supported. */
int fscrypt_select_encryption_impl(struct fscrypt_info *ci) int fscrypt_select_encryption_impl(struct fscrypt_info *ci,
bool is_hw_wrapped_key)
{ {
const struct inode *inode = ci->ci_inode; const struct inode *inode = ci->ci_inode;
struct super_block *sb = inode->i_sb; struct super_block *sb = inode->i_sb;
@@ -106,7 +108,9 @@ int fscrypt_select_encryption_impl(struct fscrypt_info *ci)
crypto_cfg.crypto_mode = ci->ci_mode->blk_crypto_mode; crypto_cfg.crypto_mode = ci->ci_mode->blk_crypto_mode;
crypto_cfg.data_unit_size = sb->s_blocksize; crypto_cfg.data_unit_size = sb->s_blocksize;
crypto_cfg.dun_bytes = fscrypt_get_dun_bytes(ci); crypto_cfg.dun_bytes = fscrypt_get_dun_bytes(ci);
crypto_cfg.key_type = BLK_CRYPTO_KEY_TYPE_STANDARD; crypto_cfg.key_type =
is_hw_wrapped_key ? BLK_CRYPTO_KEY_TYPE_HW_WRAPPED :
BLK_CRYPTO_KEY_TYPE_STANDARD;
num_devs = fscrypt_get_num_devices(sb); num_devs = fscrypt_get_num_devices(sb);
devs = kmalloc_array(num_devs, sizeof(*devs), GFP_KERNEL); devs = kmalloc_array(num_devs, sizeof(*devs), GFP_KERNEL);
if (!devs) if (!devs)
@@ -127,11 +131,15 @@ out_free_devs:
int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key, int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
const u8 *raw_key, const u8 *raw_key,
unsigned int raw_key_size,
bool is_hw_wrapped,
const struct fscrypt_info *ci) const struct fscrypt_info *ci)
{ {
const struct inode *inode = ci->ci_inode; const struct inode *inode = ci->ci_inode;
struct super_block *sb = inode->i_sb; struct super_block *sb = inode->i_sb;
enum blk_crypto_mode_num crypto_mode = ci->ci_mode->blk_crypto_mode; enum blk_crypto_mode_num crypto_mode = ci->ci_mode->blk_crypto_mode;
enum blk_crypto_key_type key_type = is_hw_wrapped ?
BLK_CRYPTO_KEY_TYPE_HW_WRAPPED : BLK_CRYPTO_KEY_TYPE_STANDARD;
int num_devs = fscrypt_get_num_devices(sb); int num_devs = fscrypt_get_num_devices(sb);
int queue_refs = 0; int queue_refs = 0;
struct fscrypt_blk_crypto_key *blk_key; struct fscrypt_blk_crypto_key *blk_key;
@@ -145,8 +153,8 @@ int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
blk_key->num_devs = num_devs; blk_key->num_devs = num_devs;
fscrypt_get_devices(sb, num_devs, blk_key->devs); fscrypt_get_devices(sb, num_devs, blk_key->devs);
err = blk_crypto_init_key(&blk_key->base, raw_key, ci->ci_mode->keysize, err = blk_crypto_init_key(&blk_key->base, raw_key, raw_key_size,
BLK_CRYPTO_KEY_TYPE_STANDARD, crypto_mode, key_type, crypto_mode,
fscrypt_get_dun_bytes(ci), sb->s_blocksize); fscrypt_get_dun_bytes(ci), sb->s_blocksize);
if (err) { if (err) {
fscrypt_err(inode, "error %d initializing blk-crypto key", err); fscrypt_err(inode, "error %d initializing blk-crypto key", err);
@@ -206,6 +214,55 @@ void fscrypt_destroy_inline_crypt_key(struct fscrypt_prepared_key *prep_key)
} }
} }
/*
* Ask the inline encryption hardware to derive the software secret from a
* hardware-wrapped key. Returns -EOPNOTSUPP if hardware-wrapped keys aren't
* supported on this filesystem or hardware.
*/
int fscrypt_derive_sw_secret(struct super_block *sb, const u8 *wrapped_key,
unsigned int wrapped_key_size,
u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE])
{
struct blk_crypto_profile *profile;
int num_devs;
/* The filesystem must be mounted with -o inlinecrypt */
if (!(sb->s_flags & SB_INLINECRYPT))
return -EOPNOTSUPP;
/*
* Hardware-wrapped keys might be specific to a particular storage
* device, so for now we don't allow them to be used if the filesystem
* uses block devices with different crypto profiles. This way, there
* is no ambiguity about which ->derive_sw_secret method to call.
*/
profile = bdev_get_queue(sb->s_bdev)->crypto_profile;
num_devs = fscrypt_get_num_devices(sb);
if (num_devs > 1) {
struct request_queue **devs =
kmalloc_array(num_devs, sizeof(*devs), GFP_KERNEL);
int i;
if (!devs)
return -ENOMEM;
fscrypt_get_devices(sb, num_devs, devs);
for (i = 0; i < num_devs; i++) {
if (devs[i]->crypto_profile != profile) {
fscrypt_warn(NULL,
"unsupported multi-device configuration for hardware-wrapped keys");
kfree(devs);
return -EOPNOTSUPP;
}
}
kfree(devs);
}
return blk_crypto_derive_sw_secret(profile, wrapped_key,
wrapped_key_size, sw_secret);
}
bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode) bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode)
{ {
return inode->i_crypt_info->ci_inlinecrypt; return inode->i_crypt_info->ci_inlinecrypt;

View File

@@ -103,11 +103,11 @@ static int fscrypt_user_key_instantiate(struct key *key,
struct key_preparsed_payload *prep) struct key_preparsed_payload *prep)
{ {
/* /*
* We just charge FSCRYPT_MAX_KEY_SIZE bytes to the user's key quota for * We just charge FSCRYPT_MAX_STANDARD_KEY_SIZE bytes to the user's key
* each key, regardless of the exact key size. The amount of memory * quota for each key, regardless of the exact key size. The amount of
* actually used is greater than the size of the raw key anyway. * memory actually used is greater than the size of the raw key anyway.
*/ */
return key_payload_reserve(key, FSCRYPT_MAX_KEY_SIZE); return key_payload_reserve(key, FSCRYPT_MAX_STANDARD_KEY_SIZE);
} }
static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m) static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m)
@@ -479,20 +479,36 @@ static int add_master_key(struct super_block *sb,
int err; int err;
if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) { if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
err = fscrypt_init_hkdf(&secret->hkdf, secret->raw, u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE];
secret->size); u8 *kdf_key = secret->raw;
unsigned int kdf_key_size = secret->size;
u8 keyid_kdf_ctx = HKDF_CONTEXT_KEY_IDENTIFIER;
/*
* For standard keys, the fscrypt master key is used directly as
* the fscrypt KDF key. For hardware-wrapped keys, we have to
* pass the master key to the hardware to derive the KDF key,
* which is then only used to derive non-file-contents subkeys.
*/
if (secret->is_hw_wrapped) {
err = fscrypt_derive_sw_secret(sb, secret->raw,
secret->size, sw_secret);
if (err)
return err;
kdf_key = sw_secret;
kdf_key_size = sizeof(sw_secret);
}
err = fscrypt_init_hkdf(&secret->hkdf, kdf_key, kdf_key_size);
/*
* Now that the KDF context is initialized, the raw KDF key is
* no longer needed.
*/
memzero_explicit(kdf_key, kdf_key_size);
if (err) if (err)
return err; return err;
/*
* Now that the HKDF context is initialized, the raw key is no
* longer needed.
*/
memzero_explicit(secret->raw, secret->size);
/* Calculate the key identifier */ /* Calculate the key identifier */
err = fscrypt_hkdf_expand(&secret->hkdf, err = fscrypt_hkdf_expand(&secret->hkdf, keyid_kdf_ctx, NULL, 0,
HKDF_CONTEXT_KEY_IDENTIFIER, NULL, 0,
key_spec->u.identifier, key_spec->u.identifier,
FSCRYPT_KEY_IDENTIFIER_SIZE); FSCRYPT_KEY_IDENTIFIER_SIZE);
if (err) if (err)
@@ -506,7 +522,7 @@ static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep)
const struct fscrypt_provisioning_key_payload *payload = prep->data; const struct fscrypt_provisioning_key_payload *payload = prep->data;
if (prep->datalen < sizeof(*payload) + FSCRYPT_MIN_KEY_SIZE || if (prep->datalen < sizeof(*payload) + FSCRYPT_MIN_KEY_SIZE ||
prep->datalen > sizeof(*payload) + FSCRYPT_MAX_KEY_SIZE) prep->datalen > sizeof(*payload) + FSCRYPT_MAX_ANY_KEY_SIZE)
return -EINVAL; return -EINVAL;
if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
@@ -655,15 +671,30 @@ int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg)
return -EACCES; return -EACCES;
memset(&secret, 0, sizeof(secret)); memset(&secret, 0, sizeof(secret));
if (arg.__flags) {
if (arg.__flags & ~__FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED)
return -EINVAL;
if (arg.key_spec.type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER)
return -EINVAL;
secret.is_hw_wrapped = true;
}
if (arg.key_id) { if (arg.key_id) {
if (arg.raw_size != 0) if (arg.raw_size != 0)
return -EINVAL; return -EINVAL;
err = get_keyring_key(arg.key_id, arg.key_spec.type, &secret); err = get_keyring_key(arg.key_id, arg.key_spec.type, &secret);
if (err) if (err)
goto out_wipe_secret; goto out_wipe_secret;
err = -EINVAL;
if (secret.size > FSCRYPT_MAX_STANDARD_KEY_SIZE &&
!secret.is_hw_wrapped)
goto out_wipe_secret;
} else { } else {
if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE || if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE ||
arg.raw_size > FSCRYPT_MAX_KEY_SIZE) arg.raw_size > (secret.is_hw_wrapped ?
FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE :
FSCRYPT_MAX_STANDARD_KEY_SIZE))
return -EINVAL; return -EINVAL;
secret.size = arg.raw_size; secret.size = arg.raw_size;
err = -EFAULT; err = -EFAULT;
@@ -696,15 +727,15 @@ EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key);
int fscrypt_add_test_dummy_key(struct super_block *sb, int fscrypt_add_test_dummy_key(struct super_block *sb,
struct fscrypt_key_specifier *key_spec) struct fscrypt_key_specifier *key_spec)
{ {
static u8 test_key[FSCRYPT_MAX_KEY_SIZE]; static u8 test_key[FSCRYPT_MAX_STANDARD_KEY_SIZE];
struct fscrypt_master_key_secret secret; struct fscrypt_master_key_secret secret;
int err; int err;
get_random_once(test_key, FSCRYPT_MAX_KEY_SIZE); get_random_once(test_key, FSCRYPT_MAX_STANDARD_KEY_SIZE);
memset(&secret, 0, sizeof(secret)); memset(&secret, 0, sizeof(secret));
secret.size = FSCRYPT_MAX_KEY_SIZE; secret.size = FSCRYPT_MAX_STANDARD_KEY_SIZE;
memcpy(secret.raw, test_key, FSCRYPT_MAX_KEY_SIZE); memcpy(secret.raw, test_key, FSCRYPT_MAX_STANDARD_KEY_SIZE);
err = add_master_key(sb, &secret, key_spec); err = add_master_key(sb, &secret, key_spec);
wipe_master_key_secret(&secret); wipe_master_key_secret(&secret);

View File

@@ -124,15 +124,23 @@ err_free_tfm:
* Prepare the crypto transform object or blk-crypto key in @prep_key, given the * Prepare the crypto transform object or blk-crypto key in @prep_key, given the
* raw key, encryption mode (@ci->ci_mode), flag indicating which encryption * raw key, encryption mode (@ci->ci_mode), flag indicating which encryption
* implementation (fs-layer or blk-crypto) will be used (@ci->ci_inlinecrypt), * implementation (fs-layer or blk-crypto) will be used (@ci->ci_inlinecrypt),
* and IV generation method (@ci->ci_policy.flags). * and IV generation method (@ci->ci_policy.flags). The raw key can be either a
* standard key or a hardware-wrapped key, as indicated by @is_hw_wrapped; it
* can only be a hardware-wrapped key if blk-crypto will be used.
*/ */
int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key, static int __fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
const u8 *raw_key, const struct fscrypt_info *ci) const u8 *raw_key, unsigned int raw_key_size,
bool is_hw_wrapped,
const struct fscrypt_info *ci)
{ {
struct crypto_skcipher *tfm; struct crypto_skcipher *tfm;
if (fscrypt_using_inline_encryption(ci)) if (fscrypt_using_inline_encryption(ci))
return fscrypt_prepare_inline_crypt_key(prep_key, raw_key, ci); return fscrypt_prepare_inline_crypt_key(prep_key,
raw_key, raw_key_size, is_hw_wrapped, ci);
if (WARN_ON(is_hw_wrapped || raw_key_size != ci->ci_mode->keysize))
return -EINVAL;
tfm = fscrypt_allocate_skcipher(ci->ci_mode, raw_key, ci->ci_inode); tfm = fscrypt_allocate_skcipher(ci->ci_mode, raw_key, ci->ci_inode);
if (IS_ERR(tfm)) if (IS_ERR(tfm))
@@ -147,6 +155,13 @@ int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
return 0; return 0;
} }
int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
const u8 *raw_key, const struct fscrypt_info *ci)
{
return __fscrypt_prepare_key(prep_key, raw_key, ci->ci_mode->keysize,
false, ci);
}
/* Destroy a crypto transform object and/or blk-crypto key. */ /* Destroy a crypto transform object and/or blk-crypto key. */
void fscrypt_destroy_prepared_key(struct fscrypt_prepared_key *prep_key) void fscrypt_destroy_prepared_key(struct fscrypt_prepared_key *prep_key)
{ {
@@ -171,14 +186,29 @@ static int setup_per_mode_enc_key(struct fscrypt_info *ci,
struct fscrypt_mode *mode = ci->ci_mode; struct fscrypt_mode *mode = ci->ci_mode;
const u8 mode_num = mode - fscrypt_modes; const u8 mode_num = mode - fscrypt_modes;
struct fscrypt_prepared_key *prep_key; struct fscrypt_prepared_key *prep_key;
u8 mode_key[FSCRYPT_MAX_KEY_SIZE]; u8 mode_key[FSCRYPT_MAX_STANDARD_KEY_SIZE];
u8 hkdf_info[sizeof(mode_num) + sizeof(sb->s_uuid)]; u8 hkdf_info[sizeof(mode_num) + sizeof(sb->s_uuid)];
unsigned int hkdf_infolen = 0; unsigned int hkdf_infolen = 0;
bool use_hw_wrapped_key = false;
int err; int err;
if (WARN_ON(mode_num > FSCRYPT_MODE_MAX)) if (WARN_ON(mode_num > FSCRYPT_MODE_MAX))
return -EINVAL; return -EINVAL;
if (mk->mk_secret.is_hw_wrapped && S_ISREG(inode->i_mode)) {
/* Using a hardware-wrapped key for file contents encryption */
if (!fscrypt_using_inline_encryption(ci)) {
if (sb->s_flags & SB_INLINECRYPT)
fscrypt_warn(ci->ci_inode,
"Hardware-wrapped key required, but no suitable inline encryption hardware is available");
else
fscrypt_warn(ci->ci_inode,
"Hardware-wrapped keys require inline encryption (-o inlinecrypt)");
return -EINVAL;
}
use_hw_wrapped_key = true;
}
prep_key = &keys[mode_num]; prep_key = &keys[mode_num];
if (fscrypt_is_key_prepared(prep_key, ci)) { if (fscrypt_is_key_prepared(prep_key, ci)) {
ci->ci_enc_key = *prep_key; ci->ci_enc_key = *prep_key;
@@ -190,6 +220,14 @@ static int setup_per_mode_enc_key(struct fscrypt_info *ci,
if (fscrypt_is_key_prepared(prep_key, ci)) if (fscrypt_is_key_prepared(prep_key, ci))
goto done_unlock; goto done_unlock;
if (use_hw_wrapped_key) {
err = __fscrypt_prepare_key(prep_key, mk->mk_secret.raw,
mk->mk_secret.size, true, ci);
if (err)
goto out_unlock;
goto done_unlock;
}
BUILD_BUG_ON(sizeof(mode_num) != 1); BUILD_BUG_ON(sizeof(mode_num) != 1);
BUILD_BUG_ON(sizeof(sb->s_uuid) != 16); BUILD_BUG_ON(sizeof(sb->s_uuid) != 16);
BUILD_BUG_ON(sizeof(hkdf_info) != 17); BUILD_BUG_ON(sizeof(hkdf_info) != 17);
@@ -312,6 +350,14 @@ static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci,
{ {
int err; int err;
if (mk->mk_secret.is_hw_wrapped &&
!(ci->ci_policy.v2.flags & (FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64 |
FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32))) {
fscrypt_warn(ci->ci_inode,
"Hardware-wrapped keys are only supported with IV_INO_LBLK policies");
return -EINVAL;
}
if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) { if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
/* /*
* DIRECT_KEY: instead of deriving per-file encryption keys, the * DIRECT_KEY: instead of deriving per-file encryption keys, the
@@ -338,7 +384,7 @@ static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci,
FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) { FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) {
err = fscrypt_setup_iv_ino_lblk_32_key(ci, mk); err = fscrypt_setup_iv_ino_lblk_32_key(ci, mk);
} else { } else {
u8 derived_key[FSCRYPT_MAX_KEY_SIZE]; u8 derived_key[FSCRYPT_MAX_STANDARD_KEY_SIZE];
err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
HKDF_CONTEXT_PER_FILE_ENC_KEY, HKDF_CONTEXT_PER_FILE_ENC_KEY,
@@ -421,10 +467,6 @@ static int setup_file_encryption_key(struct fscrypt_info *ci,
struct fscrypt_key_specifier mk_spec; struct fscrypt_key_specifier mk_spec;
int err; int err;
err = fscrypt_select_encryption_impl(ci);
if (err)
return err;
switch (ci->ci_policy.version) { switch (ci->ci_policy.version) {
case FSCRYPT_POLICY_V1: case FSCRYPT_POLICY_V1:
mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR; mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR;
@@ -449,6 +491,10 @@ static int setup_file_encryption_key(struct fscrypt_info *ci,
ci->ci_policy.version != FSCRYPT_POLICY_V1) ci->ci_policy.version != FSCRYPT_POLICY_V1)
return PTR_ERR(key); return PTR_ERR(key);
err = fscrypt_select_encryption_impl(ci, false);
if (err)
return err;
/* /*
* As a legacy fallback for v1 policies, search for the key in * As a legacy fallback for v1 policies, search for the key in
* the current task's subscribed keyrings too. Don't move this * the current task's subscribed keyrings too. Don't move this
@@ -472,8 +518,20 @@ static int setup_file_encryption_key(struct fscrypt_info *ci,
goto out_release_key; goto out_release_key;
} }
err = fscrypt_select_encryption_impl(ci, mk->mk_secret.is_hw_wrapped);
if (err)
goto out_release_key;
switch (ci->ci_policy.version) { switch (ci->ci_policy.version) {
case FSCRYPT_POLICY_V1: case FSCRYPT_POLICY_V1:
if (WARN_ON(mk->mk_secret.is_hw_wrapped)) {
/*
* This should never happen, as adding a v1 policy key
* that is hardware-wrapped isn't allowed.
*/
err = -EINVAL;
goto out_release_key;
}
err = fscrypt_setup_v1_file_key(ci, mk->mk_secret.raw); err = fscrypt_setup_v1_file_key(ci, mk->mk_secret.raw);
break; break;
case FSCRYPT_POLICY_V2: case FSCRYPT_POLICY_V2:

View File

@@ -118,7 +118,8 @@ find_and_lock_process_key(const char *prefix,
payload = (const struct fscrypt_key *)ukp->data; payload = (const struct fscrypt_key *)ukp->data;
if (ukp->datalen != sizeof(struct fscrypt_key) || if (ukp->datalen != sizeof(struct fscrypt_key) ||
payload->size < 1 || payload->size > FSCRYPT_MAX_KEY_SIZE) { payload->size < 1 ||
payload->size > FSCRYPT_MAX_STANDARD_KEY_SIZE) {
fscrypt_warn(NULL, fscrypt_warn(NULL,
"key with description '%s' has invalid payload", "key with description '%s' has invalid payload",
key->description); key->description);
@@ -148,7 +149,7 @@ struct fscrypt_direct_key {
const struct fscrypt_mode *dk_mode; const struct fscrypt_mode *dk_mode;
struct fscrypt_prepared_key dk_key; struct fscrypt_prepared_key dk_key;
u8 dk_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE]; u8 dk_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE];
u8 dk_raw[FSCRYPT_MAX_KEY_SIZE]; u8 dk_raw[FSCRYPT_MAX_STANDARD_KEY_SIZE];
}; };
static void free_direct_key(struct fscrypt_direct_key *dk) static void free_direct_key(struct fscrypt_direct_key *dk)

View File

@@ -124,7 +124,10 @@ struct fscrypt_add_key_arg {
struct fscrypt_key_specifier key_spec; struct fscrypt_key_specifier key_spec;
__u32 raw_size; __u32 raw_size;
__u32 key_id; __u32 key_id;
__u32 __reserved[8]; __u32 __reserved[7];
/* N.B.: "temporary" flag, not reserved upstream */
#define __FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED 0x00000001
__u32 __flags;
__u8 raw[]; __u8 raw[];
}; };