Merge remote-tracking branch 'stable/linux-5.15.y' into rpi-5.15.y

This commit is contained in:
Dom Cobley
2022-06-17 18:59:57 +01:00
1004 changed files with 9505 additions and 5072 deletions

View File

@@ -107,13 +107,14 @@ Description:
described in ATA8 7.16 and 7.17. Only valid if
the device is not a PM.
pio_mode: (RO) Transfer modes supported by the device when
in PIO mode. Mostly used by PATA device.
pio_mode: (RO) PIO transfer mode used by the device.
Mostly used by PATA devices.
xfer_mode: (RO) Current transfer mode
xfer_mode: (RO) Current transfer mode. Mostly used by
PATA devices.
dma_mode: (RO) Transfer modes supported by the device when
in DMA mode. Mostly used by PATA device.
dma_mode: (RO) DMA transfer mode used by the device.
Mostly used by PATA devices.
class: (RO) Device class. Can be "ata" for disk,
"atapi" for packet device, "pmp" for PM, or

View File

@@ -520,6 +520,7 @@ What: /sys/devices/system/cpu/vulnerabilities
/sys/devices/system/cpu/vulnerabilities/srbds
/sys/devices/system/cpu/vulnerabilities/tsx_async_abort
/sys/devices/system/cpu/vulnerabilities/itlb_multihit
/sys/devices/system/cpu/vulnerabilities/mmio_stale_data
Date: January 2018
Contact: Linux kernel mailing list <linux-kernel@vger.kernel.org>
Description: Information about CPU vulnerabilities

View File

@@ -37,11 +37,7 @@ Pressure interface
Pressure information for each resource is exported through the
respective file in /proc/pressure/ -- cpu, memory, and io.
The format for CPU is as such::
some avg10=0.00 avg60=0.00 avg300=0.00 total=0
and for memory and IO::
The format is as such::
some avg10=0.00 avg60=0.00 avg300=0.00 total=0
full avg10=0.00 avg60=0.00 avg300=0.00 total=0
@@ -58,6 +54,9 @@ situation from a state where some tasks are stalled but the CPU is
still doing productive work. As such, time spent in this subset of the
stall state is tracked separately and exported in the "full" averages.
CPU full is undefined at the system level, but has been reported
since 5.13, so it is set to zero for backward compatibility.
The ratios (in %) are tracked as recent trends over ten, sixty, and
three hundred second windows, which gives insight into short term events
as well as medium and long term trends. The total absolute stall time

View File

@@ -17,3 +17,4 @@ are configurable at compile, boot or run time.
special-register-buffer-data-sampling.rst
core-scheduling.rst
l1d_flush.rst
processor_mmio_stale_data.rst

View File

@@ -0,0 +1,246 @@
=========================================
Processor MMIO Stale Data Vulnerabilities
=========================================
Processor MMIO Stale Data Vulnerabilities are a class of memory-mapped I/O
(MMIO) vulnerabilities that can expose data. The sequences of operations for
exposing data range from simple to very complex. Because most of the
vulnerabilities require the attacker to have access to MMIO, many environments
are not affected. System environments using virtualization where MMIO access is
provided to untrusted guests may need mitigation. These vulnerabilities are
not transient execution attacks. However, these vulnerabilities may propagate
stale data into core fill buffers where the data can subsequently be inferred
by an unmitigated transient execution attack. Mitigation for these
vulnerabilities includes a combination of microcode update and software
changes, depending on the platform and usage model. Some of these mitigations
are similar to those used to mitigate Microarchitectural Data Sampling (MDS) or
those used to mitigate Special Register Buffer Data Sampling (SRBDS).
Data Propagators
================
Propagators are operations that result in stale data being copied or moved from
one microarchitectural buffer or register to another. Processor MMIO Stale Data
Vulnerabilities are operations that may result in stale data being directly
read into an architectural, software-visible state or sampled from a buffer or
register.
Fill Buffer Stale Data Propagator (FBSDP)
-----------------------------------------
Stale data may propagate from fill buffers (FB) into the non-coherent portion
of the uncore on some non-coherent writes. Fill buffer propagation by itself
does not make stale data architecturally visible. Stale data must be propagated
to a location where it is subject to reading or sampling.
Sideband Stale Data Propagator (SSDP)
-------------------------------------
The sideband stale data propagator (SSDP) is limited to the client (including
Intel Xeon server E3) uncore implementation. The sideband response buffer is
shared by all client cores. For non-coherent reads that go to sideband
destinations, the uncore logic returns 64 bytes of data to the core, including
both requested data and unrequested stale data, from a transaction buffer and
the sideband response buffer. As a result, stale data from the sideband
response and transaction buffers may now reside in a core fill buffer.
Primary Stale Data Propagator (PSDP)
------------------------------------
The primary stale data propagator (PSDP) is limited to the client (including
Intel Xeon server E3) uncore implementation. Similar to the sideband response
buffer, the primary response buffer is shared by all client cores. For some
processors, MMIO primary reads will return 64 bytes of data to the core fill
buffer including both requested data and unrequested stale data. This is
similar to the sideband stale data propagator.
Vulnerabilities
===============
Device Register Partial Write (DRPW) (CVE-2022-21166)
-----------------------------------------------------
Some endpoint MMIO registers incorrectly handle writes that are smaller than
the register size. Instead of aborting the write or only copying the correct
subset of bytes (for example, 2 bytes for a 2-byte write), more bytes than
specified by the write transaction may be written to the register. On
processors affected by FBSDP, this may expose stale data from the fill buffers
of the core that created the write transaction.
Shared Buffers Data Sampling (SBDS) (CVE-2022-21125)
----------------------------------------------------
After propagators may have moved data around the uncore and copied stale data
into client core fill buffers, processors affected by MFBDS can leak data from
the fill buffer. It is limited to the client (including Intel Xeon server E3)
uncore implementation.
Shared Buffers Data Read (SBDR) (CVE-2022-21123)
------------------------------------------------
It is similar to Shared Buffer Data Sampling (SBDS) except that the data is
directly read into the architectural software-visible state. It is limited to
the client (including Intel Xeon server E3) uncore implementation.
Affected Processors
===================
Not all the CPUs are affected by all the variants. For instance, most
processors for the server market (excluding Intel Xeon E3 processors) are
impacted by only Device Register Partial Write (DRPW).
Below is the list of affected Intel processors [#f1]_:
=================== ============ =========
Common name Family_Model Steppings
=================== ============ =========
HASWELL_X 06_3FH 2,4
SKYLAKE_L 06_4EH 3
BROADWELL_X 06_4FH All
SKYLAKE_X 06_55H 3,4,6,7,11
BROADWELL_D 06_56H 3,4,5
SKYLAKE 06_5EH 3
ICELAKE_X 06_6AH 4,5,6
ICELAKE_D 06_6CH 1
ICELAKE_L 06_7EH 5
ATOM_TREMONT_D 06_86H All
LAKEFIELD 06_8AH 1
KABYLAKE_L 06_8EH 9 to 12
ATOM_TREMONT 06_96H 1
ATOM_TREMONT_L 06_9CH 0
KABYLAKE 06_9EH 9 to 13
COMETLAKE 06_A5H 2,3,5
COMETLAKE_L 06_A6H 0,1
ROCKETLAKE 06_A7H 1
=================== ============ =========
If a CPU is in the affected processor list, but not affected by a variant, it
is indicated by new bits in MSR IA32_ARCH_CAPABILITIES. As described in a later
section, mitigation largely remains the same for all the variants, i.e. to
clear the CPU fill buffers via VERW instruction.
New bits in MSRs
================
Newer processors and microcode update on existing affected processors added new
bits to IA32_ARCH_CAPABILITIES MSR. These bits can be used to enumerate
specific variants of Processor MMIO Stale Data vulnerabilities and mitigation
capability.
MSR IA32_ARCH_CAPABILITIES
--------------------------
Bit 13 - SBDR_SSDP_NO - When set, processor is not affected by either the
Shared Buffers Data Read (SBDR) vulnerability or the sideband stale
data propagator (SSDP).
Bit 14 - FBSDP_NO - When set, processor is not affected by the Fill Buffer
Stale Data Propagator (FBSDP).
Bit 15 - PSDP_NO - When set, processor is not affected by Primary Stale Data
Propagator (PSDP).
Bit 17 - FB_CLEAR - When set, VERW instruction will overwrite CPU fill buffer
values as part of MD_CLEAR operations. Processors that do not
enumerate MDS_NO (meaning they are affected by MDS) but that do
enumerate support for both L1D_FLUSH and MD_CLEAR implicitly enumerate
FB_CLEAR as part of their MD_CLEAR support.
Bit 18 - FB_CLEAR_CTRL - Processor supports read and write to MSR
IA32_MCU_OPT_CTRL[FB_CLEAR_DIS]. On such processors, the FB_CLEAR_DIS
bit can be set to cause the VERW instruction to not perform the
FB_CLEAR action. Not all processors that support FB_CLEAR will support
FB_CLEAR_CTRL.
MSR IA32_MCU_OPT_CTRL
---------------------
Bit 3 - FB_CLEAR_DIS - When set, VERW instruction does not perform the FB_CLEAR
action. This may be useful to reduce the performance impact of FB_CLEAR in
cases where system software deems it warranted (for example, when performance
is more critical, or the untrusted software has no MMIO access). Note that
FB_CLEAR_DIS has no impact on enumeration (for example, it does not change
FB_CLEAR or MD_CLEAR enumeration) and it may not be supported on all processors
that enumerate FB_CLEAR.
Mitigation
==========
Like MDS, all variants of Processor MMIO Stale Data vulnerabilities have the
same mitigation strategy to force the CPU to clear the affected buffers before
an attacker can extract the secrets.
This is achieved by using the otherwise unused and obsolete VERW instruction in
combination with a microcode update. The microcode clears the affected CPU
buffers when the VERW instruction is executed.
Kernel reuses the MDS function to invoke the buffer clearing:
mds_clear_cpu_buffers()
On MDS affected CPUs, the kernel already invokes CPU buffer clear on
kernel/userspace, hypervisor/guest and C-state (idle) transitions. No
additional mitigation is needed on such CPUs.
For CPUs not affected by MDS or TAA, mitigation is needed only for the attacker
with MMIO capability. Therefore, VERW is not required for kernel/userspace. For
virtualization case, VERW is only needed at VMENTER for a guest with MMIO
capability.
Mitigation points
-----------------
Return to user space
^^^^^^^^^^^^^^^^^^^^
Same mitigation as MDS when affected by MDS/TAA, otherwise no mitigation
needed.
C-State transition
^^^^^^^^^^^^^^^^^^
Control register writes by CPU during C-state transition can propagate data
from fill buffer to uncore buffers. Execute VERW before C-state transition to
clear CPU fill buffers.
Guest entry point
^^^^^^^^^^^^^^^^^
Same mitigation as MDS when processor is also affected by MDS/TAA, otherwise
execute VERW at VMENTER only for MMIO capable guests. On CPUs not affected by
MDS/TAA, guest without MMIO access cannot extract secrets using Processor MMIO
Stale Data vulnerabilities, so there is no need to execute VERW for such guests.
Mitigation control on the kernel command line
---------------------------------------------
The kernel command line allows to control the Processor MMIO Stale Data
mitigations at boot time with the option "mmio_stale_data=". The valid
arguments for this option are:
========== =================================================================
full If the CPU is vulnerable, enable mitigation; CPU buffer clearing
on exit to userspace and when entering a VM. Idle transitions are
protected as well. It does not automatically disable SMT.
full,nosmt Same as full, with SMT disabled on vulnerable CPUs. This is the
complete mitigation.
off Disables mitigation completely.
========== =================================================================
If the CPU is affected and mmio_stale_data=off is not supplied on the kernel
command line, then the kernel selects the appropriate mitigation.
Mitigation status information
-----------------------------
The Linux kernel provides a sysfs interface to enumerate the current
vulnerability status of the system: whether the system is vulnerable, and
which mitigations are active. The relevant sysfs file is:
/sys/devices/system/cpu/vulnerabilities/mmio_stale_data
The possible values in this file are:
.. list-table::
* - 'Not affected'
- The processor is not vulnerable
* - 'Vulnerable'
- The processor is vulnerable, but no mitigation enabled
* - 'Vulnerable: Clear CPU buffers attempted, no microcode'
- The processor is vulnerable, but microcode is not updated. The
mitigation is enabled on a best effort basis.
* - 'Mitigation: Clear CPU buffers'
- The processor is vulnerable and the CPU buffer clearing mitigation is
enabled.
If the processor is vulnerable then the following information is appended to
the above information:
======================== ===========================================
'SMT vulnerable' SMT is enabled
'SMT disabled' SMT is disabled
'SMT Host state unknown' Kernel runs in a VM, Host SMT state unknown
======================== ===========================================
References
----------
.. [#f1] Affected Processors
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html

View File

@@ -3019,6 +3019,7 @@
kvm.nx_huge_pages=off [X86]
no_entry_flush [PPC]
no_uaccess_flush [PPC]
mmio_stale_data=off [X86]
Exceptions:
This does not have any effect on
@@ -3040,6 +3041,7 @@
Equivalent to: l1tf=flush,nosmt [X86]
mds=full,nosmt [X86]
tsx_async_abort=full,nosmt [X86]
mmio_stale_data=full,nosmt [X86]
mminit_loglevel=
[KNL] When CONFIG_DEBUG_MEMORY_INIT is set, this
@@ -3049,6 +3051,40 @@
log everything. Information is printed at KERN_DEBUG
so loglevel=8 may also need to be specified.
mmio_stale_data=
[X86,INTEL] Control mitigation for the Processor
MMIO Stale Data vulnerabilities.
Processor MMIO Stale Data is a class of
vulnerabilities that may expose data after an MMIO
operation. Exposed data could originate or end in
the same CPU buffers as affected by MDS and TAA.
Therefore, similar to MDS and TAA, the mitigation
is to clear the affected CPU buffers.
This parameter controls the mitigation. The
options are:
full - Enable mitigation on vulnerable CPUs
full,nosmt - Enable mitigation and disable SMT on
vulnerable CPUs.
off - Unconditionally disable mitigation
On MDS or TAA affected machines,
mmio_stale_data=off can be prevented by an active
MDS or TAA mitigation as these vulnerabilities are
mitigated with the same mechanism so in order to
disable this mitigation, you need to specify
mds=off and tsx_async_abort=off too.
Not specifying this option is equivalent to
mmio_stale_data=full.
For details see:
Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst
module.sig_enforce
[KNL] When CONFIG_MODULE_SIG is set, this means that
modules without (valid) signatures will fail to load.

View File

@@ -161,7 +161,7 @@ finally:
#
# This is also used if you do content translation via gettext catalogs.
# Usually you set "language" from the command line for these cases.
language = None
language = 'en'
# There are two options for replacing |today|: either, you set today to some
# non-false value, then it is used:

View File

@@ -72,6 +72,7 @@ examples:
dc-gpios = <&gpio 43 GPIO_ACTIVE_HIGH>;
reset-gpios = <&gpio 80 GPIO_ACTIVE_HIGH>;
rotation = <270>;
backlight = <&backlight>;
};
};

View File

@@ -9,8 +9,9 @@ Required properties:
- The second cell is reserved and is currently unused.
- gpio-controller : Marks the device node as a GPIO controller.
- interrupt-controller: Mark the device node as an interrupt controller
- #interrupt-cells : Should be 1. The interrupt type is fixed in the hardware.
- #interrupt-cells : Should be 2. The interrupt type is fixed in the hardware.
- The first cell is the GPIO offset number within the GPIO controller.
- The second cell is the interrupt trigger type and level flags.
- interrupts: Specify the interrupt.
- altr,interrupt-type: Specifies the interrupt trigger type the GPIO
hardware is synthesized. This field is required if the Altera GPIO controller
@@ -38,6 +39,6 @@ gpio_altr: gpio@ff200000 {
altr,interrupt-type = <IRQ_TYPE_EDGE_RISING>;
#gpio-cells = <2>;
gpio-controller;
#interrupt-cells = <1>;
#interrupt-cells = <2>;
interrupt-controller;
};

View File

@@ -31,7 +31,7 @@ properties:
$ref: "regulator.yaml#"
properties:
regulator-name:
regulator-compatible:
pattern: "^vbuck[1-4]$"
additionalProperties: false
@@ -55,7 +55,7 @@ examples:
regulator-min-microvolt = <300000>;
regulator-max-microvolt = <1193750>;
regulator-enable-ramp-delay = <256>;
regulator-allowed-modes = <0 1 2 4>;
regulator-allowed-modes = <0 1 2>;
};
vbuck3 {
@@ -63,7 +63,7 @@ examples:
regulator-min-microvolt = <300000>;
regulator-max-microvolt = <1193750>;
regulator-enable-ramp-delay = <256>;
regulator-allowed-modes = <0 1 2 4>;
regulator-allowed-modes = <0 1 2>;
};
};
};

View File

@@ -45,6 +45,7 @@ properties:
maxItems: 2
interconnect-names:
minItems: 1
items:
- const: qspi-config
- const: qspi-memory

View File

@@ -197,6 +197,7 @@ fault_type=%d Support configuring fault injection type, should be
FAULT_DISCARD 0x000002000
FAULT_WRITE_IO 0x000004000
FAULT_SLAB_ALLOC 0x000008000
FAULT_DQUOT_INIT 0x000010000
=================== ===========
mode=%s Control block allocation mode which supports "adaptive"
and "lfs". In "lfs" mode, there should be no random

View File

@@ -2237,7 +2237,7 @@ implicit_fb
Apply the generic implicit feedback sync mode. When this is set
and the playback stream sync mode is ASYNC, the driver tries to
tie an adjacent ASYNC capture stream as the implicit feedback
source.
source. This is equivalent with quirk_flags bit 17.
use_vmalloc
Use vmalloc() for allocations of the PCM buffers (default: yes).
For architectures with non-coherent memory like ARM or MIPS, the
@@ -2279,6 +2279,8 @@ quirk_flags
* bit 14: Ignore errors for mixer access
* bit 15: Support generic DSD raw U32_BE format
* bit 16: Set up the interface at first like UAC1
* bit 17: Apply the generic implicit feedback sync mode
* bit 18: Don't apply implicit feedback sync mode
This module supports multiple devices, autoprobe and hotplugging.

View File

@@ -267,8 +267,8 @@ restrict such paths with dedicated ruleset flags.
Ruleset layers
--------------
There is a limit of 64 layers of stacked rulesets. This can be an issue for a
task willing to enforce a new ruleset in complement to its 64 inherited
There is a limit of 16 layers of stacked rulesets. This can be an issue for a
task willing to enforce a new ruleset in complement to its 16 inherited
rulesets. Once this limit is reached, sys_landlock_restrict_self() returns
E2BIG. It is then strongly suggested to carefully build rulesets once in the
life of a thread, especially for applications able to launch other applications

View File

@@ -1,7 +1,7 @@
# SPDX-License-Identifier: GPL-2.0
VERSION = 5
PATCHLEVEL = 15
SUBLEVEL = 45
SUBLEVEL = 48
EXTRAVERSION =
NAME = Trick or Treat

View File

@@ -18,7 +18,7 @@ extern void clear_page(void *page);
#define clear_user_page(page, vaddr, pg) clear_page(page)
#define alloc_zeroed_user_highpage_movable(vma, vaddr) \
alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_ZERO, vma, vmaddr)
alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_ZERO, vma, vaddr)
#define __HAVE_ARCH_ALLOC_ZEROED_USER_HIGHPAGE_MOVABLE
extern void copy_page(void * _to, void * _from);

View File

@@ -103,7 +103,7 @@
&mac0 {
status = "okay";
phy-mode = "rgmii";
phy-mode = "rgmii-rxid";
phy-handle = <&ethphy0>;
pinctrl-names = "default";
@@ -114,7 +114,7 @@
&mac1 {
status = "okay";
phy-mode = "rgmii";
phy-mode = "rgmii-rxid";
phy-handle = <&ethphy1>;
pinctrl-names = "default";

View File

@@ -53,18 +53,17 @@
"GPIO18",
"NC", /* GPIO19 */
"NC", /* GPIO20 */
"GPIO21",
"CAM_GPIO0",
"GPIO22",
"GPIO23",
"GPIO24",
"GPIO25",
"NC", /* GPIO26 */
"CAM_GPIO0",
/* Binary number representing build/revision */
"CONFIG0",
"CONFIG1",
"CONFIG2",
"CONFIG3",
"GPIO27",
"GPIO28",
"GPIO29",
"GPIO30",
"GPIO31",
"NC", /* GPIO32 */
"NC", /* GPIO33 */
"NC", /* GPIO34 */

View File

@@ -74,16 +74,18 @@
"GPIO27",
"SDA0",
"SCL0",
"NC", /* GPIO30 */
"NC", /* GPIO31 */
"NC", /* GPIO32 */
"NC", /* GPIO33 */
"NC", /* GPIO34 */
"NC", /* GPIO35 */
"NC", /* GPIO36 */
"NC", /* GPIO37 */
"NC", /* GPIO38 */
"NC", /* GPIO39 */
/* Used by BT module */
"CTS0",
"RTS0",
"TXD0",
"RXD0",
/* Used by Wifi */
"SD1_CLK",
"SD1_CMD",
"SD1_DATA0",
"SD1_DATA1",
"SD1_DATA2",
"SD1_DATA3",
"CAM_GPIO1", /* GPIO40 */
"WL_ON", /* GPIO41 */
"NC", /* GPIO42 */

View File

@@ -45,7 +45,7 @@
#gpio-cells = <2>;
gpio-line-names = "BT_ON",
"WL_ON",
"STATUS_LED_R",
"PWR_LED_R",
"LAN_RUN",
"",
"CAM_GPIO0",

View File

@@ -63,8 +63,8 @@
"GPIO43",
"GPIO44",
"GPIO45",
"GPIO46",
"GPIO47",
"SMPS_SCL",
"SMPS_SDA",
/* Used by eMMC */
"SD_CLK_R",
"SD_CMD_R",

View File

@@ -423,14 +423,14 @@
#address-cells = <1>;
#size-cells = <1>;
cru@100 {
compatible = "simple-bus";
cru-bus@100 {
compatible = "brcm,ns-cru", "simple-mfd";
reg = <0x100 0x1a4>;
ranges;
#address-cells = <1>;
#size-cells = <1>;
lcpll0: lcpll0@100 {
lcpll0: clock-controller@100 {
#clock-cells = <1>;
compatible = "brcm,nsp-lcpll0";
reg = <0x100 0x14>;
@@ -439,7 +439,7 @@
"sdio", "ddr_phy";
};
genpll: genpll@140 {
genpll: clock-controller@140 {
#clock-cells = <1>;
compatible = "brcm,nsp-genpll";
reg = <0x140 0x24>;
@@ -450,7 +450,12 @@
"sata1", "sata2";
};
pinctrl: pin-controller@1c0 {
syscon@180 {
compatible = "brcm,cru-clkset", "syscon";
reg = <0x180 0x4>;
};
pinctrl: pinctrl@1c0 {
compatible = "brcm,bcm4708-pinmux";
reg = <0x1c0 0x24>;
reg-names = "cru_gpio_control";

View File

@@ -129,7 +129,7 @@
samsung,i2c-max-bus-freq = <20000>;
eeprom@50 {
compatible = "samsung,s524ad0xd1";
compatible = "samsung,s524ad0xd1", "atmel,24c128";
reg = <0x50>;
};
@@ -289,7 +289,7 @@
samsung,i2c-max-bus-freq = <20000>;
eeprom@51 {
compatible = "samsung,s524ad0xd1";
compatible = "samsung,s524ad0xd1", "atmel,24c128";
reg = <0x51>;
};

View File

@@ -297,7 +297,11 @@
phy-mode = "rmii";
phy-reset-gpios = <&gpio1 18 GPIO_ACTIVE_LOW>;
phy-handle = <&phy>;
clocks = <&clks IMX6QDL_CLK_ENET>, <&clks IMX6QDL_CLK_ENET>, <&rmii_clk>;
clocks = <&clks IMX6QDL_CLK_ENET>,
<&clks IMX6QDL_CLK_ENET>,
<&rmii_clk>,
<&clks IMX6QDL_CLK_ENET_REF>;
clock-names = "ipg", "ahb", "ptp", "enet_out";
status = "okay";
mdio {

View File

@@ -1,6 +1,6 @@
// SPDX-License-Identifier: GPL-2.0+ OR MIT
/*
* Copyright 2014-2020 Toradex
* Copyright 2014-2022 Toradex
* Copyright 2012 Freescale Semiconductor, Inc.
* Copyright 2011 Linaro Ltd.
*/
@@ -132,7 +132,7 @@
clock-frequency = <100000>;
pinctrl-names = "default", "gpio";
pinctrl-0 = <&pinctrl_i2c2>;
pinctrl-0 = <&pinctrl_i2c2_gpio>;
pinctrl-1 = <&pinctrl_i2c2_gpio>;
scl-gpios = <&gpio2 30 (GPIO_ACTIVE_HIGH | GPIO_OPEN_DRAIN)>;
sda-gpios = <&gpio3 16 (GPIO_ACTIVE_HIGH | GPIO_OPEN_DRAIN)>;
status = "okay";
@@ -488,7 +488,7 @@
>;
};
pinctrl_i2c2_gpio: i2c2grp {
pinctrl_i2c2_gpio: i2c2gpiogrp {
fsl,pins = <
MX6QDL_PAD_EIM_EB2__GPIO2_IO30 0x4001b8b1
MX6QDL_PAD_EIM_D16__GPIO3_IO16 0x4001b8b1

View File

@@ -287,7 +287,7 @@
clocks = <&armclk>;
};
gic: gic@1000 {
gic: interrupt-controller@1000 {
compatible = "arm,arm11mp-gic";
interrupt-controller;
#interrupt-cells = <3>;

View File

@@ -564,7 +564,6 @@
reset-gpios = <&mp05 5 GPIO_ACTIVE_LOW>;
vdd3-supply = <&ldo7_reg>;
vci-supply = <&ldo17_reg>;
spi-cs-high;
spi-max-frequency = <1200000>;
pinctrl-names = "default";
@@ -636,7 +635,7 @@
};
&i2s0 {
dmas = <&pdma0 9>, <&pdma0 10>, <&pdma0 11>;
dmas = <&pdma0 10>, <&pdma0 9>, <&pdma0 11>;
status = "okay";
};

View File

@@ -239,8 +239,8 @@
reg = <0xeee30000 0x1000>;
interrupt-parent = <&vic2>;
interrupts = <16>;
dma-names = "rx", "tx", "tx-sec";
dmas = <&pdma1 9>, <&pdma1 10>, <&pdma1 11>;
dma-names = "tx", "rx", "tx-sec";
dmas = <&pdma1 10>, <&pdma1 9>, <&pdma1 11>;
clock-names = "iis",
"i2s_opclk0",
"i2s_opclk1";
@@ -259,8 +259,8 @@
reg = <0xe2100000 0x1000>;
interrupt-parent = <&vic2>;
interrupts = <17>;
dma-names = "rx", "tx";
dmas = <&pdma1 12>, <&pdma1 13>;
dma-names = "tx", "rx";
dmas = <&pdma1 13>, <&pdma1 12>;
clock-names = "iis", "i2s_opclk0";
clocks = <&clocks CLK_I2S1>, <&clocks SCLK_AUDIO1>;
pinctrl-names = "default";
@@ -274,8 +274,8 @@
reg = <0xe2a00000 0x1000>;
interrupt-parent = <&vic2>;
interrupts = <18>;
dma-names = "rx", "tx";
dmas = <&pdma1 14>, <&pdma1 15>;
dma-names = "tx", "rx";
dmas = <&pdma1 15>, <&pdma1 14>;
clock-names = "iis", "i2s_opclk0";
clocks = <&clocks CLK_I2S2>, <&clocks SCLK_AUDIO2>;
pinctrl-names = "default";

View File

@@ -553,7 +553,6 @@
#interrupt-cells = <3>;
#address-cells = <0>;
interrupt-controller;
interrupt-parent;
reg = <0xe8c11000 0x1000>,
<0xe8c12000 0x2000>;
};

View File

@@ -46,7 +46,7 @@
<0xff113000 0x1000>;
};
intc: intc@fffed000 {
intc: interrupt-controller@fffed000 {
compatible = "arm,cortex-a9-gic";
#interrupt-cells = <3>;
interrupt-controller;

View File

@@ -38,7 +38,7 @@
<0xff113000 0x1000>;
};
intc: intc@ffffd000 {
intc: interrupt-controller@ffffd000 {
compatible = "arm,cortex-a9-gic";
#interrupt-cells = <3>;
interrupt-controller;

View File

@@ -141,6 +141,7 @@
compatible = "snps,dwmac-mdio";
reset-gpios = <&gpioz 2 GPIO_ACTIVE_LOW>;
reset-delay-us = <1000>;
reset-post-delay-us = <1000>;
phy0: ethernet-phy@7 {
reg = <7>;

View File

@@ -104,8 +104,10 @@
wdt: watchdog@1c20ca0 {
compatible = "allwinner,suniv-f1c100s-wdt",
"allwinner,sun4i-a10-wdt";
"allwinner,sun6i-a31-wdt";
reg = <0x01c20ca0 0x20>;
interrupts = <16>;
clocks = <&osc32k>;
};
uart0: serial@1c25000 {

View File

@@ -708,6 +708,7 @@ static_assert(offsetof(siginfo_t, si_upper) == 0x18);
static_assert(offsetof(siginfo_t, si_pkey) == 0x14);
static_assert(offsetof(siginfo_t, si_perf_data) == 0x10);
static_assert(offsetof(siginfo_t, si_perf_type) == 0x14);
static_assert(offsetof(siginfo_t, si_perf_flags) == 0x18);
static_assert(offsetof(siginfo_t, si_band) == 0x0c);
static_assert(offsetof(siginfo_t, si_fd) == 0x10);
static_assert(offsetof(siginfo_t, si_call_addr) == 0x0c);

View File

@@ -67,14 +67,17 @@ static void __init hi3xxx_smp_prepare_cpus(unsigned int max_cpus)
}
ctrl_base = of_iomap(np, 0);
if (!ctrl_base) {
of_node_put(np);
pr_err("failed to map address\n");
return;
}
if (of_property_read_u32(np, "smp-offset", &offset) < 0) {
of_node_put(np);
pr_err("failed to find smp-offset property\n");
return;
}
ctrl_base += offset;
of_node_put(np);
}
}
@@ -160,6 +163,7 @@ static int hip01_boot_secondary(unsigned int cpu, struct task_struct *idle)
if (WARN_ON(!node))
return -1;
ctrl_base = of_iomap(node, 0);
of_node_put(node);
/* set the secondary core boot from DDR */
remap_reg_value = readl_relaxed(ctrl_base + REG_SC_CTRL);

View File

@@ -30,6 +30,7 @@ config MACH_MT7623
config MACH_MT7629
bool "MediaTek MT7629 SoCs support"
default ARCH_MEDIATEK
select HAVE_ARM_ARCH_TIMER
config MACH_MT8127
bool "MediaTek MT8127 SoCs support"

View File

@@ -41,7 +41,7 @@ static DEFINE_SPINLOCK(clockfw_lock);
unsigned long omap1_uart_recalc(struct clk *clk)
{
unsigned int val = __raw_readl(clk->enable_reg);
return val & clk->enable_bit ? 48000000 : 12000000;
return val & 1 << clk->enable_bit ? 48000000 : 12000000;
}
unsigned long omap1_sossi_recalc(struct clk *clk)

View File

@@ -354,13 +354,13 @@ static struct platform_device cm_x300_spi_gpio = {
static struct gpiod_lookup_table cm_x300_spi_gpiod_table = {
.dev_id = "spi_gpio",
.table = {
GPIO_LOOKUP("gpio-pxa", GPIO_LCD_SCL,
GPIO_LOOKUP("pca9555.1", GPIO_LCD_SCL - GPIO_LCD_BASE,
"sck", GPIO_ACTIVE_HIGH),
GPIO_LOOKUP("gpio-pxa", GPIO_LCD_DIN,
GPIO_LOOKUP("pca9555.1", GPIO_LCD_DIN - GPIO_LCD_BASE,
"mosi", GPIO_ACTIVE_HIGH),
GPIO_LOOKUP("gpio-pxa", GPIO_LCD_DOUT,
GPIO_LOOKUP("pca9555.1", GPIO_LCD_DOUT - GPIO_LCD_BASE,
"miso", GPIO_ACTIVE_HIGH),
GPIO_LOOKUP("gpio-pxa", GPIO_LCD_CS,
GPIO_LOOKUP("pca9555.1", GPIO_LCD_CS - GPIO_LCD_BASE,
"cs", GPIO_ACTIVE_HIGH),
{ },
},

View File

@@ -681,7 +681,7 @@ static struct platform_device bq24022 = {
static struct gpiod_lookup_table bq24022_gpiod_table = {
.dev_id = "gpio-regulator",
.table = {
GPIO_LOOKUP("gpio-pxa", EGPIO_MAGICIAN_BQ24022_ISET2,
GPIO_LOOKUP("htc-egpio-0", EGPIO_MAGICIAN_BQ24022_ISET2 - MAGICIAN_EGPIO_BASE,
NULL, GPIO_ACTIVE_HIGH),
GPIO_LOOKUP("gpio-pxa", GPIO30_MAGICIAN_BQ24022_nCHARGE_EN,
"enable", GPIO_ACTIVE_LOW),

View File

@@ -296,9 +296,9 @@ static struct gpiod_lookup_table tosa_mci_gpio_table = {
.table = {
GPIO_LOOKUP("gpio-pxa", TOSA_GPIO_nSD_DETECT,
"cd", GPIO_ACTIVE_LOW),
GPIO_LOOKUP("gpio-pxa", TOSA_GPIO_SD_WP,
GPIO_LOOKUP("sharp-scoop.0", TOSA_GPIO_SD_WP - TOSA_SCOOP_GPIO_BASE,
"wp", GPIO_ACTIVE_LOW),
GPIO_LOOKUP("gpio-pxa", TOSA_GPIO_PWR_ON,
GPIO_LOOKUP("sharp-scoop.0", TOSA_GPIO_PWR_ON - TOSA_SCOOP_GPIO_BASE,
"power", GPIO_ACTIVE_HIGH),
{ },
},

View File

@@ -144,6 +144,7 @@ static int __init dcscb_init(void)
if (!node)
return -ENODEV;
dcscb_base = of_iomap(node, 0);
of_node_put(node);
if (!dcscb_base)
return -EADDRNOTAVAIL;
cfg = readl_relaxed(dcscb_base + DCS_CFG_R);

View File

@@ -259,6 +259,7 @@ config ARCH_INTEL_SOCFPGA
config ARCH_SYNQUACER
bool "Socionext SynQuacer SoC Family"
select IRQ_FASTEOI_HIERARCHY_HANDLERS
config ARCH_TEGRA
bool "NVIDIA Tegra SoC Family"

View File

@@ -71,10 +71,6 @@
&spi0 {
flash@0 {
spi-max-frequency = <108000000>;
spi-rx-bus-width = <4>;
spi-tx-bus-width = <4>;
partitions {
compatible = "fixed-partitions";
#address-cells = <1>;
@@ -112,7 +108,6 @@
&usb3 {
usb-phy = <&usb3_phy>;
status = "disabled";
};
&mdio {

View File

@@ -433,7 +433,7 @@
clock-names = "spi", "sf", "axi";
#address-cells = <1>;
#size-cells = <0>;
status = "disable";
status = "disabled";
};
i2c3: i2c3@11cb0000 {

View File

@@ -1355,8 +1355,9 @@
<&tegra_car TEGRA210_CLK_DFLL_REF>,
<&tegra_car TEGRA210_CLK_I2C5>;
clock-names = "soc", "ref", "i2c";
resets = <&tegra_car TEGRA210_RST_DFLL_DVCO>;
reset-names = "dvco";
resets = <&tegra_car TEGRA210_RST_DFLL_DVCO>,
<&tegra_car 155>;
reset-names = "dvco", "dfll";
#clock-cells = <0>;
clock-output-names = "dfllCPU_out";
status = "disabled";

View File

@@ -13,7 +13,7 @@
clocks {
sleep_clk: sleep_clk {
compatible = "fixed-clock";
clock-frequency = <32000>;
clock-frequency = <32768>;
#clock-cells = <0>;
};

View File

@@ -183,8 +183,8 @@
no-map;
};
cont_splash_mem: memory@3800000 {
reg = <0 0x03800000 0 0x2400000>;
cont_splash_mem: memory@3401000 {
reg = <0 0x03401000 0 0x2200000>;
no-map;
};
@@ -498,7 +498,7 @@
#dma-cells = <1>;
qcom,ee = <0>;
qcom,controlled-remotely;
num-channels = <18>;
num-channels = <24>;
qcom,num-ees = <4>;
};
@@ -634,7 +634,7 @@
#dma-cells = <1>;
qcom,ee = <0>;
qcom,controlled-remotely;
num-channels = <18>;
num-channels = <24>;
qcom,num-ees = <4>;
};

View File

@@ -27,7 +27,7 @@
};
/* Fixed crystal oscillator dedicated to MCP2518FD */
clk40M: can_clock {
clk40M: can-clock {
compatible = "fixed-clock";
#clock-cells = <0>;
clock-frequency = <40000000>;

View File

@@ -221,7 +221,7 @@
panel@0 {
compatible = "tianma,fhd-video";
reg = <0>;
vddi0-supply = <&vreg_l14a_1p8>;
vddio-supply = <&vreg_l14a_1p8>;
vddpos-supply = <&lab>;
vddneg-supply = <&ibb>;

View File

@@ -1477,6 +1477,7 @@
reg = <0xf780 0x24>;
clocks = <&sdhci>;
clock-names = "emmcclk";
drive-impedance-ohm = <50>;
#phy-cells = <0>;
status = "disabled";
};
@@ -1487,7 +1488,6 @@
clock-names = "refclk";
#phy-cells = <1>;
resets = <&cru SRST_PCIEPHY>;
drive-impedance-ohm = <50>;
reset-names = "phy";
status = "disabled";
};

View File

@@ -10,7 +10,6 @@
compatible = "ti,am64-uart", "ti,am654-uart";
reg = <0x00 0x04a00000 0x00 0x100>;
interrupts = <GIC_SPI 185 IRQ_TYPE_LEVEL_HIGH>;
clock-frequency = <48000000>;
current-speed = <115200>;
power-domains = <&k3_pds 149 TI_SCI_PD_EXCLUSIVE>;
clocks = <&k3_clks 149 0>;
@@ -21,7 +20,6 @@
compatible = "ti,am64-uart", "ti,am654-uart";
reg = <0x00 0x04a10000 0x00 0x100>;
interrupts = <GIC_SPI 186 IRQ_TYPE_LEVEL_HIGH>;
clock-frequency = <48000000>;
current-speed = <115200>;
power-domains = <&k3_pds 160 TI_SCI_PD_EXCLUSIVE>;
clocks = <&k3_clks 160 0>;

View File

@@ -335,12 +335,10 @@ long get_tagged_addr_ctrl(struct task_struct *task);
* of header definitions for the use of task_stack_page.
*/
#define current_top_of_stack() \
({ \
struct stack_info _info; \
BUG_ON(!on_accessible_stack(current, current_stack_pointer, 1, &_info)); \
_info.high; \
})
/*
* The top of the current task's task stack
*/
#define current_top_of_stack() ((unsigned long)current->stack + THREAD_SIZE)
#define on_thread_stack() (on_task_stack(current, current_stack_pointer, 1, NULL))
#endif /* __ASSEMBLY__ */

View File

@@ -1012,6 +1012,7 @@ static_assert(offsetof(siginfo_t, si_upper) == 0x28);
static_assert(offsetof(siginfo_t, si_pkey) == 0x20);
static_assert(offsetof(siginfo_t, si_perf_data) == 0x18);
static_assert(offsetof(siginfo_t, si_perf_type) == 0x20);
static_assert(offsetof(siginfo_t, si_perf_flags) == 0x24);
static_assert(offsetof(siginfo_t, si_band) == 0x10);
static_assert(offsetof(siginfo_t, si_fd) == 0x18);
static_assert(offsetof(siginfo_t, si_call_addr) == 0x10);

View File

@@ -487,6 +487,7 @@ static_assert(offsetof(compat_siginfo_t, si_upper) == 0x18);
static_assert(offsetof(compat_siginfo_t, si_pkey) == 0x14);
static_assert(offsetof(compat_siginfo_t, si_perf_data) == 0x10);
static_assert(offsetof(compat_siginfo_t, si_perf_type) == 0x14);
static_assert(offsetof(compat_siginfo_t, si_perf_flags) == 0x18);
static_assert(offsetof(compat_siginfo_t, si_band) == 0x0c);
static_assert(offsetof(compat_siginfo_t, si_fd) == 0x10);
static_assert(offsetof(compat_siginfo_t, si_call_addr) == 0x0c);

View File

@@ -114,6 +114,6 @@ long compat_arm_syscall(struct pt_regs *regs, int scno)
addr = instruction_pointer(regs) - (compat_thumb_mode(regs) ? 2 : 4);
arm64_notify_die("Oops - bad compat syscall(2)", regs,
SIGILL, ILL_ILLTRP, addr, scno);
SIGILL, ILL_ILLTRP, addr, 0);
return 0;
}

View File

@@ -16,8 +16,8 @@
void copy_highpage(struct page *to, struct page *from)
{
struct page *kto = page_address(to);
struct page *kfrom = page_address(from);
void *kto = page_address(to);
void *kfrom = page_address(from);
copy_page(kto, kfrom);

View File

@@ -1113,6 +1113,7 @@ skip_init_ctx:
bpf_jit_binary_free(header);
prog->bpf_func = NULL;
prog->jited = 0;
prog->jited_len = 0;
goto out_off;
}
bpf_jit_binary_lock_ro(header);

View File

@@ -28,7 +28,7 @@ static int __kprobes patch_text_cb(void *priv)
struct csky_insn_patch *param = priv;
unsigned int addr = (unsigned int)param->addr;
if (atomic_inc_return(&param->cpu_count) == 1) {
if (atomic_inc_return(&param->cpu_count) == num_online_cpus()) {
*(u16 *) addr = cpu_to_le16(param->opcode);
dcache_wb_range(addr, addr + 2);
atomic_inc(&param->cpu_count);

View File

@@ -338,7 +338,7 @@ comment "Processor Specific Options"
config M68KFPU_EMU
bool "Math emulation support"
depends on MMU
depends on M68KCLASSIC && FPU
help
At some point in the future, this will cause floating-point math
instructions to be emulated by the kernel on machines that lack a

View File

@@ -335,6 +335,7 @@ comment "Machine Options"
config UBOOT
bool "Support for U-Boot command line parameters"
depends on COLDFIRE
help
If you say Y here kernel will try to collect command
line parameters from the initial u-boot stack.

View File

@@ -42,7 +42,8 @@ extern void paging_init(void);
* ZERO_PAGE is a global shared page that is always zero: used
* for zero-mapped memory areas etc..
*/
#define ZERO_PAGE(vaddr) (virt_to_page(0))
extern void *empty_zero_page;
#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
/*
* All 32bit addresses are effectively valid for vmalloc...

View File

@@ -80,14 +80,14 @@
({ u16 __v = le16_to_cpu(*(__force volatile u16 *) (addr)); __v; })
#define rom_out_8(addr, b) \
({u8 __maybe_unused __w, __v = (b); u32 _addr = ((u32) (addr)); \
(void)({u8 __maybe_unused __w, __v = (b); u32 _addr = ((u32) (addr)); \
__w = ((*(__force volatile u8 *) ((_addr | 0x10000) + (__v<<1)))); })
#define rom_out_be16(addr, w) \
({u16 __maybe_unused __w, __v = (w); u32 _addr = ((u32) (addr)); \
(void)({u16 __maybe_unused __w, __v = (w); u32 _addr = ((u32) (addr)); \
__w = ((*(__force volatile u16 *) ((_addr & 0xFFFF0000UL) + ((__v & 0xFF)<<1)))); \
__w = ((*(__force volatile u16 *) ((_addr | 0x10000) + ((__v >> 8)<<1)))); })
#define rom_out_le16(addr, w) \
({u16 __maybe_unused __w, __v = (w); u32 _addr = ((u32) (addr)); \
(void)({u16 __maybe_unused __w, __v = (w); u32 _addr = ((u32) (addr)); \
__w = ((*(__force volatile u16 *) ((_addr & 0xFFFF0000UL) + ((__v >> 8)<<1)))); \
__w = ((*(__force volatile u16 *) ((_addr | 0x10000) + ((__v & 0xFF)<<1)))); })

View File

@@ -87,15 +87,8 @@ void (*mach_sched_init) (void) __initdata = NULL;
void (*mach_init_IRQ) (void) __initdata = NULL;
void (*mach_get_model) (char *model);
void (*mach_get_hardware_list) (struct seq_file *m);
/* machine dependent timer functions */
int (*mach_hwclk) (int, struct rtc_time*);
EXPORT_SYMBOL(mach_hwclk);
unsigned int (*mach_get_ss)(void);
int (*mach_get_rtc_pll)(struct rtc_pll_info *);
int (*mach_set_rtc_pll)(struct rtc_pll_info *);
EXPORT_SYMBOL(mach_get_ss);
EXPORT_SYMBOL(mach_get_rtc_pll);
EXPORT_SYMBOL(mach_set_rtc_pll);
void (*mach_reset)( void );
void (*mach_halt)( void );
void (*mach_power_off)( void );

View File

@@ -50,7 +50,6 @@ char __initdata command_line[COMMAND_LINE_SIZE];
/* machine dependent timer functions */
void (*mach_sched_init)(void) __initdata = NULL;
int (*mach_hwclk) (int, struct rtc_time*);
/* machine dependent reboot functions */
void (*mach_reset)(void);

View File

@@ -625,6 +625,7 @@ static inline void siginfo_build_tests(void)
/* _sigfault._perf */
BUILD_BUG_ON(offsetof(siginfo_t, si_perf_data) != 0x10);
BUILD_BUG_ON(offsetof(siginfo_t, si_perf_type) != 0x14);
BUILD_BUG_ON(offsetof(siginfo_t, si_perf_flags) != 0x18);
/* _sigpoll */
BUILD_BUG_ON(offsetof(siginfo_t, si_band) != 0x0c);

View File

@@ -63,6 +63,15 @@ void timer_heartbeat(void)
#endif /* CONFIG_HEARTBEAT */
#ifdef CONFIG_M68KCLASSIC
/* machine dependent timer functions */
int (*mach_hwclk) (int, struct rtc_time*);
EXPORT_SYMBOL(mach_hwclk);
int (*mach_get_rtc_pll)(struct rtc_pll_info *);
int (*mach_set_rtc_pll)(struct rtc_pll_info *);
EXPORT_SYMBOL(mach_get_rtc_pll);
EXPORT_SYMBOL(mach_set_rtc_pll);
#if !IS_BUILTIN(CONFIG_RTC_DRV_GENERIC)
void read_persistent_clock64(struct timespec64 *ts)
{

View File

@@ -26,7 +26,6 @@
#define cpu_has_3k_cache 0
#define cpu_has_4k_cache 1
#define cpu_has_tx39_cache 0
#define cpu_has_fpu 1
#define cpu_has_nofpuex 0
#define cpu_has_32fpr 1
#define cpu_has_counter 1

View File

@@ -29,7 +29,6 @@
#define cpu_has_3k_cache 0
#define cpu_has_4k_cache 1
#define cpu_has_tx39_cache 0
#define cpu_has_fpu 1
#define cpu_has_nofpuex 0
#define cpu_has_32fpr 1
#define cpu_has_counter 1

View File

@@ -27,6 +27,7 @@ phys_addr_t __weak mips_cpc_default_phys_base(void)
cpc_node = of_find_compatible_node(of_root, NULL, "mti,mips-cpc");
if (cpc_node) {
err = of_address_to_resource(cpc_node, 0, &res);
of_node_put(cpc_node);
if (!err)
return res.start;
}

View File

@@ -23,6 +23,7 @@ static inline cycles_t get_cycles(void)
{
return mfspr(SPR_TTCR);
}
#define get_cycles get_cycles
/* This isn't really used any more */
#define CLOCK_TICK_RATE 1000

View File

@@ -521,6 +521,15 @@ _start:
l.ori r3,r0,0x1
l.mtspr r0,r3,SPR_SR
/*
* Start the TTCR as early as possible, so that the RNG can make use of
* measurements of boot time from the earliest opportunity. Especially
* important is that the TTCR does not return zero by the time we reach
* rand_initialize().
*/
l.movhi r3,hi(SPR_TTMR_CR)
l.mtspr r0,r3,SPR_TTMR
CLEAR_GPR(r1)
CLEAR_GPR(r2)
CLEAR_GPR(r3)

View File

@@ -12,9 +12,13 @@ static inline void fb_pgprotect(struct file *file, struct vm_area_struct *vma,
pgprot_val(vma->vm_page_prot) |= _PAGE_NO_CACHE;
}
#if defined(CONFIG_STI_CONSOLE) || defined(CONFIG_FB_STI)
int fb_is_primary_device(struct fb_info *info);
#else
static inline int fb_is_primary_device(struct fb_info *info)
{
return 0;
}
#endif
#endif /* _ASM_FB_H_ */

View File

@@ -217,7 +217,6 @@ config PPC
select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && HAVE_PERF_EVENTS_NMI && !HAVE_HARDLOCKUP_DETECTOR_ARCH
select HAVE_HW_BREAKPOINT if PERF_EVENTS && (PPC_BOOK3S || PPC_8xx)
select HAVE_IOREMAP_PROT
select HAVE_IRQ_EXIT_ON_IRQ_STACK
select HAVE_IRQ_TIME_ACCOUNTING
select HAVE_KERNEL_GZIP
select HAVE_KERNEL_LZMA if DEFAULT_UIMAGE
@@ -768,7 +767,6 @@ config THREAD_SHIFT
range 13 15
default "15" if PPC_256K_PAGES
default "14" if PPC64
default "14" if KASAN
default "13"
help
Used to define the stack size. The default is almost always what you

View File

@@ -216,6 +216,9 @@ static inline bool pfn_valid(unsigned long pfn)
#define __pa(x) ((phys_addr_t)(unsigned long)(x) - VIRT_PHYS_OFFSET)
#else
#ifdef CONFIG_PPC64
#define VIRTUAL_WARN_ON(x) WARN_ON(IS_ENABLED(CONFIG_DEBUG_VIRTUAL) && (x))
/*
* gcc miscompiles (unsigned long)(&static_var) - PAGE_OFFSET
* with -mcmodel=medium, so we use & and | instead of - and + on 64-bit.
@@ -223,13 +226,13 @@ static inline bool pfn_valid(unsigned long pfn)
*/
#define __va(x) \
({ \
VIRTUAL_BUG_ON((unsigned long)(x) >= PAGE_OFFSET); \
VIRTUAL_WARN_ON((unsigned long)(x) >= PAGE_OFFSET); \
(void *)(unsigned long)((phys_addr_t)(x) | PAGE_OFFSET); \
})
#define __pa(x) \
({ \
VIRTUAL_BUG_ON((unsigned long)(x) < PAGE_OFFSET); \
VIRTUAL_WARN_ON((unsigned long)(x) < PAGE_OFFSET); \
(unsigned long)(x) & 0x0fffffffffffffffUL; \
})

View File

@@ -249,6 +249,7 @@
#define PPC_INST_COPY 0x7c20060c
#define PPC_INST_DCBA 0x7c0005ec
#define PPC_INST_DCBA_MASK 0xfc0007fe
#define PPC_INST_DSSALL 0x7e00066c
#define PPC_INST_ISEL 0x7c00001e
#define PPC_INST_ISEL_MASK 0xfc00003e
#define PPC_INST_LSWI 0x7c0004aa
@@ -576,6 +577,7 @@
#define PPC_DCBZL(a, b) stringify_in_c(.long PPC_RAW_DCBZL(a, b))
#define PPC_DIVDE(t, a, b) stringify_in_c(.long PPC_RAW_DIVDE(t, a, b))
#define PPC_DIVDEU(t, a, b) stringify_in_c(.long PPC_RAW_DIVDEU(t, a, b))
#define PPC_DSSALL stringify_in_c(.long PPC_INST_DSSALL)
#define PPC_LQARX(t, a, b, eh) stringify_in_c(.long PPC_RAW_LQARX(t, a, b, eh))
#define PPC_STQCX(t, a, b) stringify_in_c(.long PPC_RAW_STQCX(t, a, b))
#define PPC_MADDHD(t, a, b, c) stringify_in_c(.long PPC_RAW_MADDHD(t, a, b, c))

View File

@@ -14,10 +14,16 @@
#ifdef __KERNEL__
#if defined(CONFIG_VMAP_STACK) && CONFIG_THREAD_SHIFT < PAGE_SHIFT
#ifdef CONFIG_KASAN
#define MIN_THREAD_SHIFT (CONFIG_THREAD_SHIFT + 1)
#else
#define MIN_THREAD_SHIFT CONFIG_THREAD_SHIFT
#endif
#if defined(CONFIG_VMAP_STACK) && MIN_THREAD_SHIFT < PAGE_SHIFT
#define THREAD_SHIFT PAGE_SHIFT
#else
#define THREAD_SHIFT CONFIG_THREAD_SHIFT
#define THREAD_SHIFT MIN_THREAD_SHIFT
#endif
#define THREAD_SIZE (1 << THREAD_SHIFT)

View File

@@ -112,7 +112,7 @@ static inline void vas_user_win_add_mm_context(struct vas_user_win_ref *ref)
* Receive window attributes specified by the (in-kernel) owner of window.
*/
struct vas_rx_win_attr {
void *rx_fifo;
u64 rx_fifo;
int rx_fifo_size;
int wcreds_max;

View File

@@ -330,23 +330,23 @@ _GLOBAL(enter_rtas)
clrldi r4,r4,2 /* convert to realmode address */
mtlr r4
li r0,0
ori r0,r0,MSR_EE|MSR_SE|MSR_BE|MSR_RI
andc r0,r6,r0
li r9,1
rldicr r9,r9,MSR_SF_LG,(63-MSR_SF_LG)
ori r9,r9,MSR_IR|MSR_DR|MSR_FE0|MSR_FE1|MSR_FP|MSR_RI|MSR_LE
andc r6,r0,r9
__enter_rtas:
sync /* disable interrupts so SRR0/1 */
mtmsrd r0 /* don't get trashed */
LOAD_REG_ADDR(r4, rtas)
ld r5,RTASENTRY(r4) /* get the rtas->entry value */
ld r4,RTASBASE(r4) /* get the rtas->base value */
/*
* RTAS runs in 32-bit big endian real mode, but leave MSR[RI] on as we
* may hit NMI (SRESET or MCE) while in RTAS. RTAS should disable RI in
* its critical regions (as specified in PAPR+ section 7.2.1). MSR[S]
* is not impacted by RFI_TO_KERNEL (only urfid can unset it). So if
* MSR[S] is set, it will remain when entering RTAS.
*/
LOAD_REG_IMMEDIATE(r6, MSR_ME | MSR_RI)
li r0,0
mtmsrd r0,1 /* disable RI before using SRR0/1 */
mtspr SPRN_SRR0,r5
mtspr SPRN_SRR1,r6
RFI_TO_KERNEL

View File

@@ -861,7 +861,6 @@ static int fadump_alloc_mem_ranges(struct fadump_mrange_info *mrange_info)
sizeof(struct fadump_memory_range));
return 0;
}
static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info,
u64 base, u64 end)
{
@@ -880,7 +879,12 @@ static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info,
start = mem_ranges[mrange_info->mem_range_cnt - 1].base;
size = mem_ranges[mrange_info->mem_range_cnt - 1].size;
if ((start + size) == base)
/*
* Boot memory area needs separate PT_LOAD segment(s) as it
* is moved to a different location at the time of crash.
* So, fold only if the region is not boot memory area.
*/
if ((start + size) == base && start >= fw_dump.boot_mem_top)
is_adjacent = true;
}
if (!is_adjacent) {

View File

@@ -37,7 +37,7 @@ static int __init powersave_off(char *arg)
{
ppc_md.power_save = NULL;
cpuidle_disable = IDLE_POWERSAVE_OFF;
return 0;
return 1;
}
__setup("powersave=off", powersave_off);
@@ -82,7 +82,7 @@ void power4_idle(void)
return;
if (cpu_has_feature(CPU_FTR_ALTIVEC))
asm volatile("DSSALL ; sync" ::: "memory");
asm volatile(PPC_DSSALL " ; sync" ::: "memory");
power4_idle_nap();

View File

@@ -129,7 +129,7 @@ BEGIN_FTR_SECTION
END_FTR_SECTION_IFCLR(CPU_FTR_NO_DPM)
mtspr SPRN_HID0,r4
BEGIN_FTR_SECTION
DSSALL
PPC_DSSALL
sync
END_FTR_SECTION_IFSET(CPU_FTR_ALTIVEC)
lwz r8,TI_LOCAL_FLAGS(r2) /* set napping bit */

View File

@@ -96,7 +96,7 @@ END_FTR_SECTION_IFCLR(CPU_FTR_L2CR)
/* Stop DST streams */
BEGIN_FTR_SECTION
DSSALL
PPC_DSSALL
sync
END_FTR_SECTION_IFSET(CPU_FTR_ALTIVEC)
@@ -292,7 +292,7 @@ END_FTR_SECTION_IFCLR(CPU_FTR_L3CR)
isync
/* Stop DST streams */
DSSALL
PPC_DSSALL
sync
/* Get the current enable bit of the L3CR into r4 */
@@ -401,7 +401,7 @@ END_FTR_SECTION_IFSET(CPU_FTR_L3CR)
_GLOBAL(__flush_disable_L1)
/* Stop pending alitvec streams and memory accesses */
BEGIN_FTR_SECTION
DSSALL
PPC_DSSALL
END_FTR_SECTION_IFSET(CPU_FTR_ALTIVEC)
sync

View File

@@ -17,9 +17,13 @@ int ptrace_get_fpr(struct task_struct *child, int index, unsigned long *data)
#ifdef CONFIG_PPC_FPU_REGS
flush_fp_to_thread(child);
if (fpidx < (PT_FPSCR - PT_FPR0))
memcpy(data, &child->thread.TS_FPR(fpidx), sizeof(long));
if (fpidx < (PT_FPSCR - PT_FPR0)) {
if (IS_ENABLED(CONFIG_PPC32))
// On 32-bit the index we are passed refers to 32-bit words
*data = ((u32 *)child->thread.fp_state.fpr)[fpidx];
else
memcpy(data, &child->thread.TS_FPR(fpidx), sizeof(long));
} else
*data = child->thread.fp_state.fpscr;
#else
*data = 0;
@@ -39,9 +43,13 @@ int ptrace_put_fpr(struct task_struct *child, int index, unsigned long data)
#ifdef CONFIG_PPC_FPU_REGS
flush_fp_to_thread(child);
if (fpidx < (PT_FPSCR - PT_FPR0))
memcpy(&child->thread.TS_FPR(fpidx), &data, sizeof(long));
if (fpidx < (PT_FPSCR - PT_FPR0)) {
if (IS_ENABLED(CONFIG_PPC32))
// On 32-bit the index we are passed refers to 32-bit words
((u32 *)child->thread.fp_state.fpr)[fpidx] = data;
else
memcpy(&child->thread.TS_FPR(fpidx), &data, sizeof(long));
} else
child->thread.fp_state.fpscr = data;
#endif

View File

@@ -446,4 +446,7 @@ void __init pt_regs_check(void)
* real registers.
*/
BUILD_BUG_ON(PT_DSCR < sizeof(struct user_pt_regs) / sizeof(unsigned long));
// ptrace_get/put_fpr() rely on PPC32 and VSX being incompatible
BUILD_BUG_ON(IS_ENABLED(CONFIG_PPC32) && IS_ENABLED(CONFIG_VSX));
}

View File

@@ -49,6 +49,15 @@ void enter_rtas(unsigned long);
static inline void do_enter_rtas(unsigned long args)
{
unsigned long msr;
/*
* Make sure MSR[RI] is currently enabled as it will be forced later
* in enter_rtas.
*/
msr = mfmsr();
BUG_ON(!(msr & MSR_RI));
enter_rtas(args);
srr_regs_clobbered(); /* rtas uses SRRs, invalidate */

View File

@@ -181,7 +181,7 @@ _GLOBAL(swsusp_arch_resume)
#ifdef CONFIG_ALTIVEC
/* Stop pending alitvec streams and memory accesses */
BEGIN_FTR_SECTION
DSSALL
PPC_DSSALL
END_FTR_SECTION_IFSET(CPU_FTR_ALTIVEC)
#endif
sync

View File

@@ -142,7 +142,7 @@ END_FW_FTR_SECTION_IFCLR(FW_FEATURE_LPAR)
_GLOBAL(swsusp_arch_resume)
/* Stop pending alitvec streams and memory accesses */
BEGIN_FTR_SECTION
DSSALL
PPC_DSSALL
END_FTR_SECTION_IFSET(CPU_FTR_ALTIVEC)
sync

View File

@@ -5235,6 +5235,10 @@ static int kvmppc_core_init_vm_hv(struct kvm *kvm)
kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
lpcr &= LPCR_PECE | LPCR_LPES;
} else {
/*
* The L2 LPES mode will be set by the L0 according to whether
* or not it needs to take external interrupts in HV mode.
*/
lpcr = 0;
}
lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |

View File

@@ -261,8 +261,7 @@ static void load_l2_hv_regs(struct kvm_vcpu *vcpu,
/*
* Don't let L1 change LPCR bits for the L2 except these:
*/
mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD |
LPCR_LPES | LPCR_MER;
mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD | LPCR_MER;
/*
* Additional filtering is required depending on hardware

View File

@@ -81,7 +81,7 @@ void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
* context
*/
if (cpu_has_feature(CPU_FTR_ALTIVEC))
asm volatile ("dssall");
asm volatile (PPC_DSSALL);
if (!new_on_cpu)
membarrier_arch_switch_mm(prev, next, tsk);

View File

@@ -108,7 +108,7 @@ static void mmcra_sdar_mode(u64 event, unsigned long *mmcra)
*mmcra |= MMCRA_SDAR_MODE_TLB;
}
static u64 p10_thresh_cmp_val(u64 value)
static int p10_thresh_cmp_val(u64 value)
{
int exp = 0;
u64 result = value;
@@ -139,7 +139,7 @@ static u64 p10_thresh_cmp_val(u64 value)
* exponent is also zero.
*/
if (!(value & 0xC0) && exp)
result = 0;
result = -1;
else
result = (exp << 8) | value;
}
@@ -187,7 +187,7 @@ static bool is_thresh_cmp_valid(u64 event)
unsigned int cmp, exp;
if (cpu_has_feature(CPU_FTR_ARCH_31))
return p10_thresh_cmp_val(event) != 0;
return p10_thresh_cmp_val(event) >= 0;
/*
* Check the mantissa upper two bits are not zero, unless the
@@ -456,12 +456,14 @@ int isa207_get_constraint(u64 event, unsigned long *maskp, unsigned long *valp,
value |= CNST_THRESH_CTL_SEL_VAL(event >> EVENT_THRESH_SHIFT);
mask |= p10_CNST_THRESH_CMP_MASK;
value |= p10_CNST_THRESH_CMP_VAL(p10_thresh_cmp_val(event_config1));
}
} else if (event_is_threshold(event))
return -1;
} else if (cpu_has_feature(CPU_FTR_ARCH_300)) {
if (event_is_threshold(event) && is_thresh_cmp_valid(event)) {
mask |= CNST_THRESH_MASK;
value |= CNST_THRESH_VAL(event >> EVENT_THRESH_SHIFT);
}
} else if (event_is_threshold(event))
return -1;
} else {
/*
* Special case for PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC,

View File

@@ -327,6 +327,6 @@ late_initcall(cpm_init);
static int __init cpm_powersave_off(char *arg)
{
cpm.powersave_off = 1;
return 0;
return 1;
}
__setup("powersave=off", cpm_powersave_off);

View File

@@ -280,6 +280,7 @@ cpm_setbrg(uint brg, uint rate)
out_be32(bp, (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) |
CPM_BRG_EN | CPM_BRG_DIV16);
}
EXPORT_SYMBOL(cpm_setbrg);
struct cpm_ioport16 {
__be16 dir, par, odr_sor, dat, intr;

View File

@@ -48,7 +48,7 @@ flush_disable_75x:
/* Stop DST streams */
BEGIN_FTR_SECTION
DSSALL
PPC_DSSALL
sync
END_FTR_SECTION_IFSET(CPU_FTR_ALTIVEC)
@@ -197,7 +197,7 @@ flush_disable_745x:
isync
/* Stop prefetch streams */
DSSALL
PPC_DSSALL
sync
/* Disable L2 prefetching */

View File

@@ -60,7 +60,7 @@ void __init opal_fadump_dt_scan(struct fw_dump *fadump_conf, u64 node)
addr = be64_to_cpu(addr);
pr_debug("Kernel metadata addr: %llx\n", addr);
opal_fdm_active = (void *)addr;
if (opal_fdm_active->registered_regions == 0)
if (be16_to_cpu(opal_fdm_active->registered_regions) == 0)
return;
ret = opal_mpipl_query_tag(OPAL_MPIPL_TAG_BOOT_MEM, &addr);
@@ -95,17 +95,17 @@ static int opal_fadump_unregister(struct fw_dump *fadump_conf);
static void opal_fadump_update_config(struct fw_dump *fadump_conf,
const struct opal_fadump_mem_struct *fdm)
{
pr_debug("Boot memory regions count: %d\n", fdm->region_cnt);
pr_debug("Boot memory regions count: %d\n", be16_to_cpu(fdm->region_cnt));
/*
* The destination address of the first boot memory region is the
* destination address of boot memory regions.
*/
fadump_conf->boot_mem_dest_addr = fdm->rgn[0].dest;
fadump_conf->boot_mem_dest_addr = be64_to_cpu(fdm->rgn[0].dest);
pr_debug("Destination address of boot memory regions: %#016llx\n",
fadump_conf->boot_mem_dest_addr);
fadump_conf->fadumphdr_addr = fdm->fadumphdr_addr;
fadump_conf->fadumphdr_addr = be64_to_cpu(fdm->fadumphdr_addr);
}
/*
@@ -126,9 +126,9 @@ static void opal_fadump_get_config(struct fw_dump *fadump_conf,
fadump_conf->boot_memory_size = 0;
pr_debug("Boot memory regions:\n");
for (i = 0; i < fdm->region_cnt; i++) {
base = fdm->rgn[i].src;
size = fdm->rgn[i].size;
for (i = 0; i < be16_to_cpu(fdm->region_cnt); i++) {
base = be64_to_cpu(fdm->rgn[i].src);
size = be64_to_cpu(fdm->rgn[i].size);
pr_debug("\t[%03d] base: 0x%lx, size: 0x%lx\n", i, base, size);
fadump_conf->boot_mem_addr[i] = base;
@@ -143,7 +143,7 @@ static void opal_fadump_get_config(struct fw_dump *fadump_conf,
* Start address of reserve dump area (permanent reservation) for
* re-registering FADump after dump capture.
*/
fadump_conf->reserve_dump_area_start = fdm->rgn[0].dest;
fadump_conf->reserve_dump_area_start = be64_to_cpu(fdm->rgn[0].dest);
/*
* Rarely, but it can so happen that system crashes before all
@@ -155,13 +155,14 @@ static void opal_fadump_get_config(struct fw_dump *fadump_conf,
* Hope the memory that could not be preserved only has pages
* that are usually filtered out while saving the vmcore.
*/
if (fdm->region_cnt > fdm->registered_regions) {
if (be16_to_cpu(fdm->region_cnt) > be16_to_cpu(fdm->registered_regions)) {
pr_warn("Not all memory regions were saved!!!\n");
pr_warn(" Unsaved memory regions:\n");
i = fdm->registered_regions;
while (i < fdm->region_cnt) {
i = be16_to_cpu(fdm->registered_regions);
while (i < be16_to_cpu(fdm->region_cnt)) {
pr_warn("\t[%03d] base: 0x%llx, size: 0x%llx\n",
i, fdm->rgn[i].src, fdm->rgn[i].size);
i, be64_to_cpu(fdm->rgn[i].src),
be64_to_cpu(fdm->rgn[i].size));
i++;
}
@@ -170,7 +171,7 @@ static void opal_fadump_get_config(struct fw_dump *fadump_conf,
}
fadump_conf->boot_mem_top = (fadump_conf->boot_memory_size + hole_size);
fadump_conf->boot_mem_regs_cnt = fdm->region_cnt;
fadump_conf->boot_mem_regs_cnt = be16_to_cpu(fdm->region_cnt);
opal_fadump_update_config(fadump_conf, fdm);
}
@@ -178,34 +179,37 @@ static void opal_fadump_get_config(struct fw_dump *fadump_conf,
static void opal_fadump_init_metadata(struct opal_fadump_mem_struct *fdm)
{
fdm->version = OPAL_FADUMP_VERSION;
fdm->region_cnt = 0;
fdm->registered_regions = 0;
fdm->fadumphdr_addr = 0;
fdm->region_cnt = cpu_to_be16(0);
fdm->registered_regions = cpu_to_be16(0);
fdm->fadumphdr_addr = cpu_to_be64(0);
}
static u64 opal_fadump_init_mem_struct(struct fw_dump *fadump_conf)
{
u64 addr = fadump_conf->reserve_dump_area_start;
u16 reg_cnt;
int i;
opal_fdm = __va(fadump_conf->kernel_metadata);
opal_fadump_init_metadata(opal_fdm);
/* Boot memory regions */
reg_cnt = be16_to_cpu(opal_fdm->region_cnt);
for (i = 0; i < fadump_conf->boot_mem_regs_cnt; i++) {
opal_fdm->rgn[i].src = fadump_conf->boot_mem_addr[i];
opal_fdm->rgn[i].dest = addr;
opal_fdm->rgn[i].size = fadump_conf->boot_mem_sz[i];
opal_fdm->rgn[i].src = cpu_to_be64(fadump_conf->boot_mem_addr[i]);
opal_fdm->rgn[i].dest = cpu_to_be64(addr);
opal_fdm->rgn[i].size = cpu_to_be64(fadump_conf->boot_mem_sz[i]);
opal_fdm->region_cnt++;
reg_cnt++;
addr += fadump_conf->boot_mem_sz[i];
}
opal_fdm->region_cnt = cpu_to_be16(reg_cnt);
/*
* Kernel metadata is passed to f/w and retrieved in capture kerenl.
* So, use it to save fadump header address instead of calculating it.
*/
opal_fdm->fadumphdr_addr = (opal_fdm->rgn[0].dest +
opal_fdm->fadumphdr_addr = cpu_to_be64(be64_to_cpu(opal_fdm->rgn[0].dest) +
fadump_conf->boot_memory_size);
opal_fadump_update_config(fadump_conf, opal_fdm);
@@ -269,18 +273,21 @@ static u64 opal_fadump_get_bootmem_min(void)
static int opal_fadump_register(struct fw_dump *fadump_conf)
{
s64 rc = OPAL_PARAMETER;
u16 registered_regs;
int i, err = -EIO;
for (i = 0; i < opal_fdm->region_cnt; i++) {
registered_regs = be16_to_cpu(opal_fdm->registered_regions);
for (i = 0; i < be16_to_cpu(opal_fdm->region_cnt); i++) {
rc = opal_mpipl_update(OPAL_MPIPL_ADD_RANGE,
opal_fdm->rgn[i].src,
opal_fdm->rgn[i].dest,
opal_fdm->rgn[i].size);
be64_to_cpu(opal_fdm->rgn[i].src),
be64_to_cpu(opal_fdm->rgn[i].dest),
be64_to_cpu(opal_fdm->rgn[i].size));
if (rc != OPAL_SUCCESS)
break;
opal_fdm->registered_regions++;
registered_regs++;
}
opal_fdm->registered_regions = cpu_to_be16(registered_regs);
switch (rc) {
case OPAL_SUCCESS:
@@ -291,7 +298,8 @@ static int opal_fadump_register(struct fw_dump *fadump_conf)
case OPAL_RESOURCE:
/* If MAX regions limit in f/w is hit, warn and proceed. */
pr_warn("%d regions could not be registered for MPIPL as MAX limit is reached!\n",
(opal_fdm->region_cnt - opal_fdm->registered_regions));
(be16_to_cpu(opal_fdm->region_cnt) -
be16_to_cpu(opal_fdm->registered_regions)));
fadump_conf->dump_registered = 1;
err = 0;
break;
@@ -312,7 +320,7 @@ static int opal_fadump_register(struct fw_dump *fadump_conf)
* If some regions were registered before OPAL_MPIPL_ADD_RANGE
* OPAL call failed, unregister all regions.
*/
if ((err < 0) && (opal_fdm->registered_regions > 0))
if ((err < 0) && (be16_to_cpu(opal_fdm->registered_regions) > 0))
opal_fadump_unregister(fadump_conf);
return err;
@@ -328,7 +336,7 @@ static int opal_fadump_unregister(struct fw_dump *fadump_conf)
return -EIO;
}
opal_fdm->registered_regions = 0;
opal_fdm->registered_regions = cpu_to_be16(0);
fadump_conf->dump_registered = 0;
return 0;
}
@@ -563,19 +571,20 @@ static void opal_fadump_region_show(struct fw_dump *fadump_conf,
else
fdm_ptr = opal_fdm;
for (i = 0; i < fdm_ptr->region_cnt; i++) {
for (i = 0; i < be16_to_cpu(fdm_ptr->region_cnt); i++) {
/*
* Only regions that are registered for MPIPL
* would have dump data.
*/
if ((fadump_conf->dump_active) &&
(i < fdm_ptr->registered_regions))
dumped_bytes = fdm_ptr->rgn[i].size;
(i < be16_to_cpu(fdm_ptr->registered_regions)))
dumped_bytes = be64_to_cpu(fdm_ptr->rgn[i].size);
seq_printf(m, "DUMP: Src: %#016llx, Dest: %#016llx, ",
fdm_ptr->rgn[i].src, fdm_ptr->rgn[i].dest);
be64_to_cpu(fdm_ptr->rgn[i].src),
be64_to_cpu(fdm_ptr->rgn[i].dest));
seq_printf(m, "Size: %#llx, Dumped: %#llx bytes\n",
fdm_ptr->rgn[i].size, dumped_bytes);
be64_to_cpu(fdm_ptr->rgn[i].size), dumped_bytes);
}
/* Dump is active. Show reserved area start address. */
@@ -624,6 +633,7 @@ void __init opal_fadump_dt_scan(struct fw_dump *fadump_conf, u64 node)
{
const __be32 *prop;
unsigned long dn;
__be64 be_addr;
u64 addr = 0;
int i, len;
s64 ret;
@@ -680,13 +690,13 @@ void __init opal_fadump_dt_scan(struct fw_dump *fadump_conf, u64 node)
if (!prop)
return;
ret = opal_mpipl_query_tag(OPAL_MPIPL_TAG_KERNEL, &addr);
if ((ret != OPAL_SUCCESS) || !addr) {
ret = opal_mpipl_query_tag(OPAL_MPIPL_TAG_KERNEL, &be_addr);
if ((ret != OPAL_SUCCESS) || !be_addr) {
pr_err("Failed to get Kernel metadata (%lld)\n", ret);
return;
}
addr = be64_to_cpu(addr);
addr = be64_to_cpu(be_addr);
pr_debug("Kernel metadata addr: %llx\n", addr);
opal_fdm_active = __va(addr);
@@ -697,14 +707,14 @@ void __init opal_fadump_dt_scan(struct fw_dump *fadump_conf, u64 node)
}
/* Kernel regions not registered with f/w for MPIPL */
if (opal_fdm_active->registered_regions == 0) {
if (be16_to_cpu(opal_fdm_active->registered_regions) == 0) {
opal_fdm_active = NULL;
return;
}
ret = opal_mpipl_query_tag(OPAL_MPIPL_TAG_CPU, &addr);
if (addr) {
addr = be64_to_cpu(addr);
ret = opal_mpipl_query_tag(OPAL_MPIPL_TAG_CPU, &be_addr);
if (be_addr) {
addr = be64_to_cpu(be_addr);
pr_debug("CPU metadata addr: %llx\n", addr);
opal_cpu_metadata = __va(addr);
}

View File

@@ -31,14 +31,14 @@
* OPAL FADump kernel metadata
*
* The address of this structure will be registered with f/w for retrieving
* and processing during crash dump.
* in the capture kernel to process the crash dump.
*/
struct opal_fadump_mem_struct {
u8 version;
u8 reserved[3];
u16 region_cnt; /* number of regions */
u16 registered_regions; /* Regions registered for MPIPL */
u64 fadumphdr_addr;
__be16 region_cnt; /* number of regions */
__be16 registered_regions; /* Regions registered for MPIPL */
__be64 fadumphdr_addr;
struct opal_mpipl_region rgn[FADUMP_MAX_MEM_REGS];
} __packed;
@@ -135,7 +135,7 @@ static inline void opal_fadump_read_regs(char *bufp, unsigned int regs_cnt,
for (i = 0; i < regs_cnt; i++, bufp += reg_entry_size) {
reg_entry = (struct hdat_fadump_reg_entry *)bufp;
val = (cpu_endian ? be64_to_cpu(reg_entry->reg_val) :
reg_entry->reg_val);
(u64)(reg_entry->reg_val));
opal_fadump_set_regval_regnum(regs,
be32_to_cpu(reg_entry->reg_type),
be32_to_cpu(reg_entry->reg_num),

View File

@@ -55,6 +55,7 @@ static int __init uv_init(void)
return -ENODEV;
uv_memcons = memcons_init(node, "memcons");
of_node_put(node);
if (!uv_memcons)
return -ENOENT;

View File

@@ -216,7 +216,7 @@ int vas_setup_fault_window(struct vas_instance *vinst)
vas_init_rx_win_attr(&attr, VAS_COP_TYPE_FAULT);
attr.rx_fifo_size = vinst->fault_fifo_size;
attr.rx_fifo = vinst->fault_fifo;
attr.rx_fifo = __pa(vinst->fault_fifo);
/*
* Max creds is based on number of CRBs can fit in the FIFO.

View File

@@ -404,7 +404,7 @@ static void init_winctx_regs(struct pnv_vas_window *window,
*
* See also: Design note in function header.
*/
val = __pa(winctx->rx_fifo);
val = winctx->rx_fifo;
val = SET_FIELD(VAS_PAGE_MIGRATION_SELECT, val, 0);
write_hvwc_reg(window, VREG(LFIFO_BAR), val);
@@ -739,7 +739,7 @@ static void init_winctx_for_rxwin(struct pnv_vas_window *rxwin,
*/
winctx->fifo_disable = true;
winctx->intr_disable = true;
winctx->rx_fifo = NULL;
winctx->rx_fifo = 0;
}
winctx->lnotify_lpid = rxattr->lnotify_lpid;

View File

@@ -376,7 +376,7 @@ struct pnv_vas_window {
* is a container for the register fields in the window context.
*/
struct vas_winctx {
void *rx_fifo;
u64 rx_fifo;
int rx_fifo_size;
int wcreds_max;
int rsvd_txbuf_count;

Some files were not shown because too many files have changed in this diff Show More