BACKPORT: mm: multi-gen LRU: groundwork

Evictable pages are divided into multiple generations for each lruvec.
The youngest generation number is stored in lrugen->max_seq for both
anon and file types as they are aged on an equal footing. The oldest
generation numbers are stored in lrugen->min_seq[] separately for anon
and file types as clean file pages can be evicted regardless of swap
constraints. These three variables are monotonically increasing.

Generation numbers are truncated into order_base_2(MAX_NR_GENS+1) bits
in order to fit into the gen counter in page->flags. Each truncated
generation number is an index to lrugen->lists[]. The sliding window
technique is used to track at least MIN_NR_GENS and at most
MAX_NR_GENS generations. The gen counter stores a value within [1,
MAX_NR_GENS] while a page is on one of lrugen->lists[]. Otherwise it
stores 0.

There are two conceptually independent procedures: "the aging", which
produces young generations, and "the eviction", which consumes old
generations.  They form a closed-loop system, i.e., "the page reclaim".
Both procedures can be invoked from userspace for the purposes of working
set estimation and proactive reclaim.  These techniques are commonly used
to optimize job scheduling (bin packing) in data centers [1][2].

To avoid confusion, the terms "hot" and "cold" will be applied to the
multi-gen LRU, as a new convention; the terms "active" and "inactive" will
be applied to the active/inactive LRU, as usual.

The protection of hot pages and the selection of cold pages are based
on page access channels and patterns. There are two access channels:
one through page tables and the other through file descriptors. The
protection of the former channel is by design stronger because:
1. The uncertainty in determining the access patterns of the former
   channel is higher due to the approximation of the accessed bit.
2. The cost of evicting the former channel is higher due to the TLB
   flushes required and the likelihood of encountering the dirty bit.
3. The penalty of underprotecting the former channel is higher because
   applications usually do not prepare themselves for major page
   faults like they do for blocked I/O. E.g., GUI applications
   commonly use dedicated I/O threads to avoid blocking rendering
   threads.

There are also two access patterns: one with temporal locality and the
other without.  For the reasons listed above, the former channel is
assumed to follow the former pattern unless VM_SEQ_READ or VM_RAND_READ is
present; the latter channel is assumed to follow the latter pattern unless
outlying refaults have been observed [3][4].

The next patch will address the "outlying refaults".  Three macros, i.e.,
LRU_REFS_WIDTH, LRU_REFS_PGOFF and LRU_REFS_MASK, used later are added in
this patch to make the entire patchset less diffy.

A page is added to the youngest generation on faulting.  The aging needs
to check the accessed bit at least twice before handing this page over to
the eviction.  The first check takes care of the accessed bit set on the
initial fault; the second check makes sure this page has not been used
since then.  This protocol, AKA second chance, requires a minimum of two
generations, hence MIN_NR_GENS.

[1] https://dl.acm.org/doi/10.1145/3297858.3304053
[2] https://dl.acm.org/doi/10.1145/3503222.3507731
[3] https://lwn.net/Articles/495543/
[4] https://lwn.net/Articles/815342/

Link: https://lkml.kernel.org/r/20220918080010.2920238-6-yuzhao@google.com
Change-Id: I7b24d1e9d263e4eb2c2ee23f2eb143824fcb5201
Signed-off-by: Yu Zhao <yuzhao@google.com>
Acked-by: Brian Geffon <bgeffon@google.com>
Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org>
Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Acked-by: Steven Barrett <steven@liquorix.net>
Acked-by: Suleiman Souhlal <suleiman@google.com>
Tested-by: Daniel Byrne <djbyrne@mtu.edu>
Tested-by: Donald Carr <d@chaos-reins.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru>
Tested-by: Shuang Zhai <szhai2@cs.rochester.edu>
Tested-by: Sofia Trinh <sofia.trinh@edi.works>
Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Barry Song <baohua@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michael Larabel <Michael@MichaelLarabel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
(cherry picked from commit ec1c86b25f4bdd9dce6436c0539d2a6ae676e1c4)
[ Resolve conflicts in mm/memory.c, mm/memcontrol.c, mm/Kconfig,
include/linux/mm_inline.h]
Bug: 249601646
Signed-off-by: Kalesh Singh <kaleshsingh@google.com>
This commit is contained in:
Yu Zhao
2022-09-18 02:00:02 -06:00
committed by Kalesh Singh
parent 7add16c824
commit d5b2fa1c7b
16 changed files with 425 additions and 14 deletions

View File

@@ -298,6 +298,102 @@ enum lruvec_flags {
*/
};
#endif /* !__GENERATING_BOUNDS_H */
/*
* Evictable pages are divided into multiple generations. The youngest and the
* oldest generation numbers, max_seq and min_seq, are monotonically increasing.
* They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
* offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
* corresponding generation. The gen counter in page->flags stores gen+1 while
* a page is on one of lrugen->lists[]. Otherwise it stores 0.
*
* A page is added to the youngest generation on faulting. The aging needs to
* check the accessed bit at least twice before handing this page over to the
* eviction. The first check takes care of the accessed bit set on the initial
* fault; the second check makes sure this page hasn't been used since then.
* This process, AKA second chance, requires a minimum of two generations,
* hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive
* LRU, e.g., /proc/vmstat, these two generations are considered active; the
* rest of generations, if they exist, are considered inactive. See
* lru_gen_is_active().
*
* PG_active is always cleared while a page is on one of lrugen->lists[] so that
* the aging needs not to worry about it. And it's set again when a page
* considered active is isolated for non-reclaiming purposes, e.g., migration.
* See lru_gen_add_page() and lru_gen_del_page().
*
* MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
* number of categories of the active/inactive LRU when keeping track of
* accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
* in page->flags.
*/
#define MIN_NR_GENS 2U
#define MAX_NR_GENS 4U
#ifndef __GENERATING_BOUNDS_H
struct lruvec;
#define LRU_GEN_MASK ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
#define LRU_REFS_MASK ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
#ifdef CONFIG_LRU_GEN
enum {
LRU_GEN_ANON,
LRU_GEN_FILE,
};
/*
* The youngest generation number is stored in max_seq for both anon and file
* types as they are aged on an equal footing. The oldest generation numbers are
* stored in min_seq[] separately for anon and file types as clean file pages
* can be evicted regardless of swap constraints.
*
* Normally anon and file min_seq are in sync. But if swapping is constrained,
* e.g., out of swap space, file min_seq is allowed to advance and leave anon
* min_seq behind.
*
* The number of pages in each generation is eventually consistent and therefore
* can be transiently negative.
*/
struct lru_gen_struct {
/* the aging increments the youngest generation number */
unsigned long max_seq;
/* the eviction increments the oldest generation numbers */
unsigned long min_seq[ANON_AND_FILE];
/* the multi-gen LRU lists, lazily sorted on eviction */
struct list_head lists[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
/* the multi-gen LRU sizes, eventually consistent */
long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
};
void lru_gen_init_lruvec(struct lruvec *lruvec);
#ifdef CONFIG_MEMCG
void lru_gen_init_memcg(struct mem_cgroup *memcg);
void lru_gen_exit_memcg(struct mem_cgroup *memcg);
#endif
#else /* !CONFIG_LRU_GEN */
static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
{
}
#ifdef CONFIG_MEMCG
static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
{
}
static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
{
}
#endif
#endif /* CONFIG_LRU_GEN */
struct lruvec {
struct list_head lists[NR_LRU_LISTS];
/* per lruvec lru_lock for memcg */
@@ -315,6 +411,10 @@ struct lruvec {
unsigned long refaults[ANON_AND_FILE];
/* Various lruvec state flags (enum lruvec_flags) */
unsigned long flags;
#ifdef CONFIG_LRU_GEN
/* evictable pages divided into generations */
struct lru_gen_struct lrugen;
#endif
#ifdef CONFIG_MEMCG
struct pglist_data *pgdat;
#endif