Changes in 5.15.76
r8152: add PID for the Lenovo OneLink+ Dock
arm64/mm: Consolidate TCR_EL1 fields
usb: gadget: uvc: consistently use define for headerlen
usb: gadget: uvc: use on returned header len in video_encode_isoc_sg
usb: gadget: uvc: rework uvcg_queue_next_buffer to uvcg_complete_buffer
usb: gadget: uvc: giveback vb2 buffer on req complete
usb: gadget: uvc: improve sg exit condition
arm64: errata: Remove AES hwcap for COMPAT tasks
perf/x86/intel/pt: Relax address filter validation
btrfs: enhance unsupported compat RO flags handling
ocfs2: clear dinode links count in case of error
ocfs2: fix BUG when iput after ocfs2_mknod fails
selinux: enable use of both GFP_KERNEL and GFP_ATOMIC in convert_context()
cpufreq: qcom: fix writes in read-only memory region
i2c: qcom-cci: Fix ordering of pm_runtime_xx and i2c_add_adapter
x86/microcode/AMD: Apply the patch early on every logical thread
hwmon/coretemp: Handle large core ID value
ata: ahci-imx: Fix MODULE_ALIAS
ata: ahci: Match EM_MAX_SLOTS with SATA_PMP_MAX_PORTS
x86/resctrl: Fix min_cbm_bits for AMD
cpufreq: qcom: fix memory leak in error path
drm/amdgpu: fix sdma doorbell init ordering on APUs
mm,hugetlb: take hugetlb_lock before decrementing h->resv_huge_pages
kvm: Add support for arch compat vm ioctls
KVM: arm64: vgic: Fix exit condition in scan_its_table()
media: ipu3-imgu: Fix NULL pointer dereference in active selection access
media: mceusb: set timeout to at least timeout provided
media: venus: dec: Handle the case where find_format fails
x86/topology: Fix multiple packages shown on a single-package system
x86/topology: Fix duplicated core ID within a package
btrfs: fix processing of delayed data refs during backref walking
btrfs: fix processing of delayed tree block refs during backref walking
drm/vc4: Add module dependency on hdmi-codec
ACPI: extlog: Handle multiple records
tipc: Fix recognition of trial period
tipc: fix an information leak in tipc_topsrv_kern_subscr
i40e: Fix DMA mappings leak
HID: magicmouse: Do not set BTN_MOUSE on double report
sfc: Change VF mac via PF as first preference if available.
net/atm: fix proc_mpc_write incorrect return value
net: phy: dp83867: Extend RX strap quirk for SGMII mode
net: phylink: add mac_managed_pm in phylink_config structure
scsi: lpfc: Fix memory leak in lpfc_create_port()
udp: Update reuse->has_conns under reuseport_lock.
cifs: Fix xid leak in cifs_create()
cifs: Fix xid leak in cifs_copy_file_range()
cifs: Fix xid leak in cifs_flock()
cifs: Fix xid leak in cifs_ses_add_channel()
dm: remove unnecessary assignment statement in alloc_dev()
net: hsr: avoid possible NULL deref in skb_clone()
ionic: catch NULL pointer issue on reconfig
netfilter: nf_tables: relax NFTA_SET_ELEM_KEY_END set flags requirements
nvme-hwmon: consistently ignore errors from nvme_hwmon_init
nvme-hwmon: kmalloc the NVME SMART log buffer
nvmet: fix workqueue MEM_RECLAIM flushing dependency
net: sched: cake: fix null pointer access issue when cake_init() fails
net: sched: delete duplicate cleanup of backlog and qlen
net: sched: sfb: fix null pointer access issue when sfb_init() fails
sfc: include vport_id in filter spec hash and equal()
wwan_hwsim: fix possible memory leak in wwan_hwsim_dev_new()
net: hns: fix possible memory leak in hnae_ae_register()
net: sched: fix race condition in qdisc_graft()
net: phy: dp83822: disable MDI crossover status change interrupt
iommu/vt-d: Allow NVS regions in arch_rmrr_sanity_check()
iommu/vt-d: Clean up si_domain in the init_dmars() error path
fs: dlm: fix invalid derefence of sb_lvbptr
arm64: mte: move register initialization to C
ksmbd: handle smb2 query dir request for OutputBufferLength that is too small
ksmbd: fix incorrect handling of iterate_dir
tracing: Simplify conditional compilation code in tracing_set_tracer()
tracing: Do not free snapshot if tracer is on cmdline
mmc: sdhci-tegra: Use actual clock rate for SW tuning correction
perf: Skip and warn on unknown format 'configN' attrs
ACPI: video: Force backlight native for more TongFang devices
x86/Kconfig: Drop check for -mabi=ms for CONFIG_EFI_STUB
Makefile.debug: re-enable debug info for .S files
mmc: core: Add SD card quirk for broken discard
mm: /proc/pid/smaps_rollup: fix no vma's null-deref
Linux 5.15.76
Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
Change-Id: Ica5b3f26c36900ff31ccac63f4fb55b52bff0ec2
[ Upstream commit 973b9e37330656dec719ede508e4dc40e5c2d80c ]
If FEAT_MTE2 is disabled via the arm64.nomte command line argument on a
CPU that claims to support FEAT_MTE2, the kernel will use Tagged Normal
in the MAIR. If we interpret arm64.nomte to mean that the CPU does not
in fact implement FEAT_MTE2, setting the system register like this may
lead to UNSPECIFIED behavior. Fix it by arranging for MAIR to be set
in the C function cpu_enable_mte which is called based on the sanitized
version of the system register.
There is no need for the rest of the MTE-related system register
initialization to happen from assembly, with the exception of TCR_EL1,
which must be set to include at least TBI1 because the secondary CPUs
access KASan-allocated data structures early. Therefore, make the TCR_EL1
initialization unconditional and move the rest of the initialization to
cpu_enable_mte so that we no longer have a dependency on the unsanitized
ID register value.
Co-developed-by: Evgenii Stepanov <eugenis@google.com>
Signed-off-by: Peter Collingbourne <pcc@google.com>
Signed-off-by: Evgenii Stepanov <eugenis@google.com>
Suggested-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: kernel test robot <lkp@intel.com>
Fixes: 3b714d24ef ("arm64: mte: CPU feature detection and initial sysreg configuration")
Cc: <stable@vger.kernel.org> # 5.10.x
Link: https://lore.kernel.org/r/20220915222053.3484231-1-eugenis@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
In preparation for conversion to automatic generation refresh the names
given to the items in the MTE feture enumeration to reflect our standard
pattern for naming, corresponding to the architecture feature names they
reflect. No functional change.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-17-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
(cherry picked from commit 2e75b393ff2e45a32e9621e1b27cd7854122c1c8)
Signed-off-by: Will Deacon <willdeacon@google.com>
Bug: 233587962
Bug: 233588291
Change-Id: Ib2c972b26e74bae053be56276ed1379f5fd806d4
Our standard is to include the _EL1 in the constant names for registers but
we did not do that for ID_AA64PFR1_EL1, update to do so in preparation for
conversion to automatic generation. No functional change.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-8-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
(cherry picked from commit 6ca2b9ca459a598b78265477d288fdec8a0fdd6d)
[willdeacon@: Dropped hunks relating to absent sve/sme overrides; fixed
SME EL2 init asm]
Signed-off-by: Will Deacon <willdeacon@google.com>
Bug: 233587962
Bug: 233588291
Change-Id: Ia77ed26a62dc12634c2b1b97de3ddd3f1b28d3f9
Non-coherent devices on systems that support a system or
last level cache may want to request that allocations be
cached in the system cache. For memory that is allocated
by the kernel, and used for DMA with devices, the memory
attributes used for CPU access should match the memory
attributes that will be used for device access.
The memory attributes that need to be programmed into
the MAIR for system cache usage are:
0xf4 - Normal memory, outer write back read/write allocate,
inner non-cacheable.
There is currently no support for this memory attribute for
CPU mappings, so add it.
Bug: 189339242
Change-Id: I3abc7becd408f20ac5499cbbe3c6c6f53f784107
Signed-off-by: Isaac J. Manjarres <isaacm@codeaurora.org>
Signed-off-by: Georgi Djakov <quic_c_gdjako@quicinc.com>
When KASAN_HW_TAGS is selected, KASAN is enabled at boot time, and the
hardware supports MTE, we'll initialize `kernel_gcr_excl` with a value
dependent on KASAN_TAG_MAX. While the resulting value is a constant
which depends on KASAN_TAG_MAX, we have to perform some runtime work to
generate the value, and have to read the value from memory during the
exception entry path. It would be better if we could generate this as a
constant at compile-time, and use it as such directly.
Early in boot within __cpu_setup(), we initialize GCR_EL1 to a safe
value, and later override this with the value required by KASAN. If
CONFIG_KASAN_HW_TAGS is not selected, or if KASAN is disabeld at boot
time, the kernel will not use IRG instructions, and so the initial value
of GCR_EL1 is does not matter to the kernel. Thus, we can instead have
__cpu_setup() initialize GCR_EL1 to a value consistent with
KASAN_TAG_MAX, and avoid the need to re-initialize it during hotplug and
resume form suspend.
This patch makes arem64 use a compile-time constant KERNEL_GCR_EL1
value, which is compatible with KASAN_HW_TAGS when this is selected.
This removes the need to re-initialize GCR_EL1 dynamically, and acts as
an optimization to the entry assembly, which no longer needs to load
this value from memory. The redundant initialization hooks are removed.
In order to do this, KASAN_TAG_MAX needs to be visible outside of the
core KASAN code. To do this, I've moved the KASAN_TAG_* values into
<linux/kasan-tags.h>.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Tested-by: Andrey Konovalov <andreyknvl@gmail.com>
Link: https://lore.kernel.org/r/20210714143843.56537-3-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
KASAN optimisations for the hardware tagging (MTE) implementation.
* for-next/mte:
kasan: disable freed user page poisoning with HW tags
arm64: mte: handle tags zeroing at page allocation time
kasan: use separate (un)poison implementation for integrated init
mm: arch: remove indirection level in alloc_zeroed_user_highpage_movable()
kasan: speed up mte_set_mem_tag_range
Lots of cleanup to our various page-table definitions, but also some
non-critical fixes and removal of some unnecessary memory types. The
most interesting change here is the reduction of ARCH_DMA_MINALIGN back
to 64 bytes, since we're not aware of any machines that need a higher
value with the way the code is structured (only needed for non-coherent
DMA).
* for-next/mm:
arm64: tlb: fix the TTL value of tlb_get_level
arm64/mm: Rename ARM64_SWAPPER_USES_SECTION_MAPS
arm64: head: fix code comments in set_cpu_boot_mode_flag
arm64: mm: drop unused __pa(__idmap_text_start)
arm64: mm: fix the count comments in compute_indices
arm64/mm: Fix ttbr0 values stored in struct thread_info for software-pan
arm64: mm: Pass original fault address to handle_mm_fault()
arm64/mm: Drop SECTION_[SHIFT|SIZE|MASK]
arm64/mm: Use CONT_PMD_SHIFT for ARM64_MEMSTART_SHIFT
arm64/mm: Drop SWAPPER_INIT_MAP_SIZE
arm64: mm: decode xFSC in mem_abort_decode()
arm64: mm: Add is_el1_data_abort() helper
arm64: cache: Lower ARCH_DMA_MINALIGN to 64 (L1_CACHE_BYTES)
arm64: mm: Remove unused support for Normal-WT memory type
arm64: acpi: Map EFI_MEMORY_WT memory as Normal-NC
arm64: mm: Remove unused support for Device-GRE memory type
arm64: mm: Use better bitmap_zalloc()
arm64/mm: Make vmemmap_free() available only with CONFIG_MEMORY_HOTPLUG
arm64/mm: Remove [PUD|PMD]_TABLE_BIT from [pud|pmd]_bad()
arm64/mm: Validate CONFIG_PGTABLE_LEVELS
Currently, on an anonymous page fault, the kernel allocates a zeroed
page and maps it in user space. If the mapping is tagged (PROT_MTE),
set_pte_at() additionally clears the tags. It is, however, more
efficient to clear the tags at the same time as zeroing the data on
allocation. To avoid clearing the tags on any page (which may not be
mapped as tagged), only do this if the vma flags contain VM_MTE. This
requires introducing a new GFP flag that is used to determine whether
to clear the tags.
The DC GZVA instruction with a 0 top byte (and 0 tag) requires
top-byte-ignore. Set the TCR_EL1.{TBI1,TBID1} bits irrespective of
whether KASAN_HW is enabled.
Signed-off-by: Peter Collingbourne <pcc@google.com>
Co-developed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://linux-review.googlesource.com/id/Id46dc94e30fe11474f7e54f5d65e7658dbdddb26
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Link: https://lore.kernel.org/r/20210602235230.3928842-4-pcc@google.com
Signed-off-by: Will Deacon <will@kernel.org>
In __cpu_setup we conditionally manipulate the TCR_EL1 value in x10
after previously using x10 as a scratch register for unrelated temporary
variables.
To make this a bit clearer, let's move the TCR_EL1 value into a named
register `tcr`. To simplify the register allocation, this is placed in
the highest available caller-saved scratch register, tcr.
Following the example of `mair`, we initialise the register with the
default value prior to any feature discovery, and write it to MAIR_EL1
after all feature discovery is complete, which allows us to simplify the
featuere discovery code.
The existing `mte_tcr` register is no longer needed, and is replaced by
the use of x10 as a temporary, matching the rest of the MTE feature
discovery assembly in __cpu_setup. As x20 is no longer used, the
function is now AAPCS compliant, as we've generally aimed for in our
assembly functions.
There should be no functional change as as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210326180137.43119-3-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In __cpu_setup we conditionally manipulate the MAIR_EL1 value in x5
before later reusing x5 as a scratch register for unrelated temporary
variables.
To make this a bit clearer, let's move the MAIR_EL1 value into a named
register `mair`. To simplify the register allocation, this is placed in
the highest available caller-saved scratch register, x17. As it is no
longer clobbered by other usage, we can write the value to MAIR_EL1 at
the end of the function as we do for TCR_EL1 rather than part-way though
feature discovery.
There should be no functional change as as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210326180137.43119-2-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Commit 49b3cf035e ("kasan: arm64: set TCR_EL1.TBID1 when enabled") set
the TBID1 bit for the KASAN_SW_TAGS configuration, freeing up 8 bits to
be used by PAC. With in-kernel MTE now in mainline, also set this bit
for the KASAN_HW_TAGS configuration.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Acked-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Acked-by: Andrey Konovalov <andreyknvl@google.com>
Depending on configuration options and specific code paths, we either
use the empty_zero_page or the configuration-dependent reserved_ttbr0
as a reserved value for TTBR{0,1}_EL1.
To simplify this code, let's always allocate and use the same
reserved_pg_dir, replacing reserved_ttbr0. Note that this is allocated
(and hence pre-zeroed), and is also marked as read-only in the kernel
Image mapping.
Keeping this separate from the empty_zero_page potentially helps with
robustness as the empty_zero_page is used in a number of cases where a
failure to map it read-only could allow it to become corrupted.
The (presently unused) swapper_pg_end symbol is also removed, and
comments are added wherever we rely on the offsets between the
pre-allocated pg_dirs to keep these cases easily identifiable.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201103102229.8542-1-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Add the cpufeature and hwcap entries to detect the presence of MTE. Any
secondary CPU not supporting the feature, if detected on the boot CPU,
will be parked.
Add the minimum SCTLR_EL1 and HCR_EL2 bits for enabling MTE. The Normal
Tagged memory type is configured in MAIR_EL1 before the MMU is enabled
in order to avoid disrupting other CPUs in the CnP domain.
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Co-developed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Suzuki K Poulose <Suzuki.Poulose@arm.com>
Once user space is given access to tagged memory, the kernel must be
able to clear/save/restore tags visible to the user. This is done via
the linear mapping, therefore map it as such. The new MT_NORMAL_TAGGED
index for MAIR_EL1 is initially mapped as Normal memory and later
changed to Normal Tagged via the cpufeature infrastructure. From a
mismatched attribute aliases perspective, the Tagged memory is
considered a permission and it won't lead to undefined behaviour.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Suzuki K Poulose <Suzuki.Poulose@arm.com>
Support for Clang's Shadow Call Stack in the kernel
(Sami Tolvanen and Will Deacon)
* for-next/scs:
arm64: entry-ftrace.S: Update comment to indicate that x18 is live
scs: Move DEFINE_SCS macro into core code
scs: Remove references to asm/scs.h from core code
scs: Move scs_overflow_check() out of architecture code
arm64: scs: Use 'scs_sp' register alias for x18
scs: Move accounting into alloc/free functions
arm64: scs: Store absolute SCS stack pointer value in thread_info
efi/libstub: Disable Shadow Call Stack
arm64: scs: Add shadow stacks for SDEI
arm64: Implement Shadow Call Stack
arm64: Disable SCS for hypervisor code
arm64: vdso: Disable Shadow Call Stack
arm64: efi: Restore register x18 if it was corrupted
arm64: Preserve register x18 when CPU is suspended
arm64: Reserve register x18 from general allocation with SCS
scs: Disable when function graph tracing is enabled
scs: Add support for stack usage debugging
scs: Add page accounting for shadow call stack allocations
scs: Add support for Clang's Shadow Call Stack (SCS)
Currently __cpu_setup conditionally initializes the address
authentication keys and enables them in SCTLR_EL1, doing so differently
for the primary CPU and secondary CPUs, and skipping this work for CPUs
returning from an idle state. For the latter case, cpu_do_resume
restores the keys and SCTLR_EL1 value after the MMU has been enabled.
This flow is rather difficult to follow, so instead let's move the
primary and secondary CPU initialization into their respective boot
paths. By following the example of cpu_do_resume and doing so once the
MMU is enabled, we can always initialize the keys from the values in
thread_struct, and avoid the machinery necessary to pass the keys in
secondary_data or open-coding initialization for the boot CPU.
This means we perform an additional RMW of SCTLR_EL1, but we already do
this in the cpu_do_resume path, and for other features in cpufeature.c,
so this isn't a major concern in a bringup path. Note that even while
the enable bits are clear, the key registers are accessible.
As this now renders the argument to __cpu_setup redundant, let's also
remove that entirely. Future extensions can follow a similar approach to
initialize values that differ for primary/secondary CPUs.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Reviewed-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Cc: Amit Daniel Kachhap <amit.kachhap@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20200423101606.37601-3-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
* for-next/asm-cleanups:
: Various asm clean-ups (alignment, mov_q vs ldr, .idmap)
arm64: move kimage_vaddr to .rodata
arm64: use mov_q instead of literal ldr
* for-next/memory-hotremove:
: Memory hot-remove support for arm64
arm64/mm: Enable memory hot remove
arm64/mm: Hold memory hotplug lock while walking for kernel page table dump
* for-next/arm_sdei:
: SDEI: fix double locking on return from hibernate and clean-up
firmware: arm_sdei: clean up sdei_event_create()
firmware: arm_sdei: Use cpus_read_lock() to avoid races with cpuhp
firmware: arm_sdei: fix possible double-lock on hibernate error path
firmware: arm_sdei: fix double-lock on hibernate with shared events
* for-next/amu:
: ARMv8.4 Activity Monitors support
clocksource/drivers/arm_arch_timer: validate arch_timer_rate
arm64: use activity monitors for frequency invariance
cpufreq: add function to get the hardware max frequency
Documentation: arm64: document support for the AMU extension
arm64/kvm: disable access to AMU registers from kvm guests
arm64: trap to EL1 accesses to AMU counters from EL0
arm64: add support for the AMU extension v1
* for-next/final-cap-helper:
: Introduce cpus_have_final_cap_helper(), migrate arm64 KVM to it
arm64: kvm: hyp: use cpus_have_final_cap()
arm64: cpufeature: add cpus_have_final_cap()
* for-next/cpu_ops-cleanup:
: cpu_ops[] access code clean-up
arm64: Introduce get_cpu_ops() helper function
arm64: Rename cpu_read_ops() to init_cpu_ops()
arm64: Declare ACPI parking protocol CPU operation if needed
* for-next/misc:
: Various fixes and clean-ups
arm64: define __alloc_zeroed_user_highpage
arm64/kernel: Simplify __cpu_up() by bailing out early
arm64: remove redundant blank for '=' operator
arm64: kexec_file: Fixed code style.
arm64: add blank after 'if'
arm64: fix spelling mistake "ca not" -> "cannot"
arm64: entry: unmask IRQ in el0_sp()
arm64: efi: add efi-entry.o to targets instead of extra-$(CONFIG_EFI)
arm64: csum: Optimise IPv6 header checksum
arch/arm64: fix typo in a comment
arm64: remove gratuitious/stray .ltorg stanzas
arm64: Update comment for ASID() macro
arm64: mm: convert cpu_do_switch_mm() to C
arm64: fix NUMA Kconfig typos
* for-next/perf:
: arm64 perf updates
arm64: perf: Add support for ARMv8.5-PMU 64-bit counters
KVM: arm64: limit PMU version to PMUv3 for ARMv8.1
arm64: cpufeature: Extract capped perfmon fields
arm64: perf: Clean up enable/disable calls
perf: arm-ccn: Use scnprintf() for robustness
arm64: perf: Support new DT compatibles
arm64: perf: Refactor PMU init callbacks
perf: arm_spe: Remove unnecessary zero check on 'nr_pages'
In practice, this requires only 2 instructions, or even only 1 for
the idmap_pg_dir size (with 4 or 64 KiB pages). Only the MAIR values
needed more than 2 instructions and it was already converted to mov_q
by 95b3f74bec.
Signed-off-by: Remi Denis-Courmont <remi.denis.courmont@huawei.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
This patch restores the kernel keys from current task during cpu resume
after the mmu is turned on and ptrauth is enabled.
A flag is added in macro ptrauth_keys_install_kernel to check if isb
instruction needs to be executed.
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Reviewed-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Set up keys to use pointer authentication within the kernel. The kernel
will be compiled with APIAKey instructions, the other keys are currently
unused. Each task is given its own APIAKey, which is initialized during
fork. The key is changed during context switch and on kernel entry from
EL0.
The keys for idle threads need to be set before calling any C functions,
because it is not possible to enter and exit a function with different
keys.
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[Amit: Modified secondary cores key structure, comments]
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When the kernel is compiled with pointer auth instructions, the boot CPU
needs to start using address auth very early, so change the cpucap to
account for this.
Pointer auth must be enabled before we call C functions, because it is
not possible to enter a function with pointer auth disabled and exit it
with pointer auth enabled. Note, mismatches between architected and
IMPDEF algorithms will still be caught by the cpufeature framework (the
separate *_ARCH and *_IMP_DEF cpucaps).
Note the change in behavior: if the boot CPU has address auth and a
late CPU does not, then the late CPU is parked by the cpufeature
framework. This is possible as kernel will only have NOP space intructions
for PAC so such mismatched late cpu will silently ignore those
instructions in C functions. Also, if the boot CPU does not have address
auth and the late CPU has then the late cpu will still boot but with
ptrauth feature disabled.
Leave generic authentication as a "system scope" cpucap for now, since
initially the kernel will only use address authentication.
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[Amit: Re-worked ptrauth setup logic, comments]
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch allows __cpu_setup to be invoked with one of these flags,
ARM64_CPU_BOOT_PRIMARY, ARM64_CPU_BOOT_SECONDARY or ARM64_CPU_RUNTIME.
This is required as some cpufeatures need different handling during
different scenarios.
The input parameter in x0 is preserved till the end to be used inside
this function.
There should be no functional change with this patch and is useful
for the subsequent ptrauth patch which utilizes it. Some upcoming
arm cpufeatures can also utilize these flags.
Suggested-by: James Morse <james.morse@arm.com>
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Reviewed-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The activity monitors extension is an optional extension introduced
by the ARMv8.4 CPU architecture. In order to access the activity
monitors counters safely, if desired, the kernel should detect the
presence of the extension through the feature register, and mediate
the access.
Therefore, disable direct accesses to activity monitors counters
from EL0 (userspace) and trap them to EL1 (kernel).
To be noted that the ARM64_AMU_EXTN kernel config does not have an
effect on this code. Given that the amuserenr_el0 resets to an
UNKNOWN value, setting the trap of EL0 accesses to EL1 is always
attempted for safety and security considerations. Therefore firmware
should still ensure accesses to AMU registers are not trapped in
EL2/EL3 as this code cannot be bypassed if the CPU implements the
Activity Monitors Unit.
Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Steve Capper <steve.capper@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
There's no reason that cpu_do_switch_mm() needs to be written as an
assembly function, and having it as a C function would make it easier to
maintain.
This patch converts cpu_do_switch_mm() to C, removing code that this
change makes redundant (e.g. the mmid macro). Since the header comment
was stale and the prototype now implies all the necessary information,
this comment is removed. The 'pgd_phys' argument is made a phys_addr_t
to match the return type of virt_to_phys().
At the same time, post_ttbr_update_workaround() is updated to use
IS_ENABLED(), which allows the compiler to figure out it can elide calls
for !CONFIG_CAVIUM_ERRATUM_27456 builds.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
[catalin.marinas@arm.com: change comments from asm-style to C-style]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently, the arm64 __cpu_setup has hard-coded constants for the memory
attributes that go into the MAIR_EL1 register. Define proper macros in
asm/sysreg.h and make use of them in proc.S.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
idmap_kpti_install_ng_mappings uses x18 as a temporary register, which
will result in a conflict when x18 is reserved. Use x16 and x17 instead
where needed.
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
In an effort to clarify and simplify the annotation of assembly functions
in the kernel new macros have been introduced. These replace ENTRY and
ENDPROC and also add a new annotation for static functions which previously
had no ENTRY equivalent. Update the annotations in the mm code to the
new macros. Even the functions called from non-standard environments
like idmap have no special requirements on their environments so can be
treated like regular functions.
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
* for-next/52-bit-kva: (25 commits)
Support for 52-bit virtual addressing in kernel space
* for-next/cpu-topology: (9 commits)
Move CPU topology parsing into core code and add support for ACPI 6.3
* for-next/error-injection: (2 commits)
Support for function error injection via kprobes
* for-next/perf: (8 commits)
Support for i.MX8 DDR PMU and proper SMMUv3 group validation
* for-next/psci-cpuidle: (7 commits)
Move PSCI idle code into a new CPUidle driver
* for-next/rng: (4 commits)
Support for 'rng-seed' property being passed in the devicetree
* for-next/smpboot: (3 commits)
Reduce fragility of secondary CPU bringup in debug configurations
* for-next/tbi: (10 commits)
Introduce new syscall ABI with relaxed requirements for pointer tags
* for-next/tlbi: (6 commits)
Handle spurious page faults arising from kernel space
While the MMUs is disabled, I-cache speculation can result in
instructions being fetched from the PoC. During boot we may patch
instructions (e.g. for alternatives and jump labels), and these may be
dirty at the PoU (and stale at the PoC).
Thus, while the MMU is disabled in the KPTI pagetable fixup code we may
load stale instructions into the I-cache, potentially leading to
subsequent crashes when executing regions of code which have been
modified at runtime.
Similarly to commit:
8ec4198743 ("arm64: mm: ensure patched kernel text is fetched from PoU")
... we can invalidate the I-cache after enabling the MMU to prevent such
issues.
The KPTI pagetable fixup code itself should be clean to the PoC per the
boot protocol, so no maintenance is required for this code.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Previous patches have enabled 52-bit kernel + user VAs and there is no
longer any scenario where user VA != kernel VA size.
This patch removes the, now redundant, vabits_user variable and replaces
usage with vabits_actual where appropriate.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>