[ Upstream commit 619f51da097952194a5d4d6a6c5f9ef3b9d1b25a ]
The timer is disarmed when switching between TSC deadline and other modes;
however, the pending timer is still in-flight, so let's accurately remove
any traces of the previous mode.
Fixes: 4427593258 ("KVM: x86: thoroughly disarm LAPIC timer around TSC deadline switch")
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 1714a4eb6fb0cb79f182873cd011a8ed60ac65e8 ]
As commit 0c5f81dad4 ("KVM: LAPIC: Inject timer interrupt via posted
interrupt") mentioned that the host admin should well tune the guest
setup, so that vCPUs are placed on isolated pCPUs, and with several pCPUs
surplus for *busy* housekeeping. In this setup, it is preferrable to
disable mwait/hlt/pause vmexits to keep the vCPUs in non-root mode.
However, if only some guests isolated and others not, they would not
have any benefit from posted timer interrupts, and at the same time lose
VMX preemption timer fast paths because kvm_can_post_timer_interrupt()
returns true and therefore forces kvm_can_use_hv_timer() to false.
By guaranteeing that posted-interrupt timer is only used if MWAIT or
HLT are done without vmexit, KVM can make a better choice and use the
VMX preemption timer and the corresponding fast paths.
Reported-by: Aili Yao <yaoaili@kingsoft.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Cc: Aili Yao <yaoaili@kingsoft.com>
Cc: Sean Christopherson <seanjc@google.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1643112538-36743-1-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d22a81b304a27fca6124174a8e842e826c193466 ]
Emulating writes to SELF_IPI with a write to ICR has an unwanted side effect:
the value of ICR in vAPIC page gets changed. The lists SELF_IPI as write-only,
with no associated MMIO offset, so any write should have no visible side
effect in the vAPIC page.
Reported-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f66af9f222f08d5b11ea41c1bd6c07a0f12daa07 ]
In emulation of writing to cr8, one of the lowest four bits in TPR[3:0]
is kept.
According to Intel SDM 10.8.6.1(baremetal scenario):
"APIC.TPR[bits 7:4] = CR8[bits 3:0], APIC.TPR[bits 3:0] = 0";
and SDM 28.3(use TPR shadow):
"MOV to CR8. The instruction stores bits 3:0 of its source operand into
bits 7:4 of VTPR; the remainder of VTPR (bits 3:0 and bits 31:8) are
cleared.";
and AMD's APM 16.6.4:
"Task Priority Sub-class (TPS)-Bits 3 : 0. The TPS field indicates the
current sub-priority to be used when arbitrating lowest-priority messages.
This field is written with zero when TPR is written using the architectural
CR8 register.";
so in KVM emulated scenario, clear TPR[3:0] to make a consistent behavior
as in other scenarios.
This doesn't impact evaluation and delivery of pending virtual interrupts
because processor does not use the processor-priority sub-class to
determine which interrupts to delivery and which to inhibit.
Sub-class is used by hardware to arbitrate lowest priority interrupts,
but KVM just does a round-robin style delivery.
Fixes: b93463aa59 ("KVM: Accelerated apic support")
Signed-off-by: Zhenzhong Duan <zhenzhong.duan@intel.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220210094506.20181-1-zhenzhong.duan@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 35fe7cfbab2e81f1afb23fc4212210b1de6d9633 upstream.
The below warning is splatting during guest reboot.
------------[ cut here ]------------
WARNING: CPU: 0 PID: 1931 at arch/x86/kvm/x86.c:10322 kvm_arch_vcpu_ioctl_run+0x874/0x880 [kvm]
CPU: 0 PID: 1931 Comm: qemu-system-x86 Tainted: G I 5.17.0-rc1+ #5
RIP: 0010:kvm_arch_vcpu_ioctl_run+0x874/0x880 [kvm]
Call Trace:
<TASK>
kvm_vcpu_ioctl+0x279/0x710 [kvm]
__x64_sys_ioctl+0x83/0xb0
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7fd39797350b
This can be triggered by not exposing tsc-deadline mode and doing a reboot in
the guest. The lapic_shutdown() function which is called in sys_reboot path
will not disarm the flying timer, it just masks LVTT. lapic_shutdown() clears
APIC state w/ LVT_MASKED and timer-mode bit is 0, this can trigger timer-mode
switch between tsc-deadline and oneshot/periodic, which can result in preemption
timer be cancelled in apic_update_lvtt(). However, We can't depend on this when
not exposing tsc-deadline mode and oneshot/periodic modes emulated by preemption
timer. Qemu will synchronise states around reset, let's cancel preemption timer
under KVM_SET_LAPIC.
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1643102220-35667-1-git-send-email-wanpengli@tencent.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 37c4dbf337c5c2cdb24365ffae6ed70ac1e74d7a upstream.
The IRTE for an assigned device can trigger a POSTED_INTR_VECTOR even
if APICv is disabled on the vCPU that receives it. In that case, the
interrupt will just cause a vmexit and leave the ON bit set together
with the PIR bit corresponding to the interrupt.
Right now, the interrupt would not be delivered until APICv is re-enabled.
However, fixing this is just a matter of always doing the PIR->IRR
synchronization, even if the vCPU has temporarily disabled APICv.
This is not a problem for performance, or if anything it is an
improvement. First, in the common case where vcpu->arch.apicv_active is
true, one fewer check has to be performed. Second, static_call_cond will
elide the function call if APICv is not present or disabled. Finally,
in the case for AMD hardware we can remove the sync_pir_to_irr callback:
it is only needed for apic_has_interrupt_for_ppr, and that function
already has a fallback for !APICv.
Cc: stable@vger.kernel.org
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Message-Id: <20211123004311.2954158-4-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
WARN if the static keys used to track if any vCPU has disabled its APIC
are left elevated at module exit. Unlike the underflow case, nothing in
the static key infrastructure will complain if a key is left elevated,
and because an elevated key only affects performance, nothing in KVM will
fail if either key is improperly incremented.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211013003554.47705-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Revert a change to open code bits of kvm_lapic_set_base() when emulating
APIC RESET to fix an apic_hw_disabled underflow bug due to arch.apic_base
and apic_hw_disabled being unsyncrhonized when the APIC is created. If
kvm_arch_vcpu_create() fails after creating the APIC, kvm_free_lapic()
will see the initialized-to-zero vcpu->arch.apic_base and decrement
apic_hw_disabled without KVM ever having incremented apic_hw_disabled.
Using kvm_lapic_set_base() in kvm_lapic_reset() is also desirable for a
potential future where KVM supports RESET outside of vCPU creation, in
which case all the side effects of kvm_lapic_set_base() are needed, e.g.
to handle the transition from x2APIC => xAPIC.
Alternatively, KVM could temporarily increment apic_hw_disabled (and call
kvm_lapic_set_base() at RESET), but that's a waste of cycles and would
impact the performance of other vCPUs and VMs. The other subtle side
effect is that updating the xAPIC ID needs to be done at RESET regardless
of whether the APIC was previously enabled, i.e. kvm_lapic_reset() needs
an explicit call to kvm_apic_set_xapic_id() regardless of whether or not
kvm_lapic_set_base() also performs the update. That makes stuffing the
enable bit at vCPU creation slightly more palatable, as doing so affects
only the apic_hw_disabled key.
Opportunistically tweak the comment to explicitly call out the connection
between vcpu->arch.apic_base and apic_hw_disabled, and add a comment to
call out the need to always do kvm_apic_set_xapic_id() at RESET.
Underflow scenario:
kvm_vm_ioctl() {
kvm_vm_ioctl_create_vcpu() {
kvm_arch_vcpu_create() {
if (something_went_wrong)
goto fail_free_lapic;
/* vcpu->arch.apic_base is initialized when something_went_wrong is false. */
kvm_vcpu_reset() {
kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event) {
vcpu->arch.apic_base = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE;
}
}
return 0;
fail_free_lapic:
kvm_free_lapic() {
/* vcpu->arch.apic_base is not yet initialized when something_went_wrong is true. */
if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE))
static_branch_slow_dec_deferred(&apic_hw_disabled); // <= underflow bug.
}
return r;
}
}
}
This (mostly) reverts commit 421221234a.
Fixes: 421221234a ("KVM: x86: Open code necessary bits of kvm_lapic_set_base() at vCPU RESET")
Reported-by: syzbot+9fc046ab2b0cf295a063@syzkaller.appspotmail.com
Debugged-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211013003554.47705-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Consolidate the APIC base RESET logic, which is currently spread out
across both x86 and vendor code. For an in-kernel APIC, the vendor code
is redundant. But for a userspace APIC, KVM relies on the vendor code
to initialize vcpu->arch.apic_base. Hoist the vcpu->arch.apic_base
initialization above the !apic check so that it applies to both flavors
of APIC emulation, and delete the vendor code.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-19-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Stuff vcpu->arch.apic_base and apic->base_address directly during APIC
reset, as opposed to bouncing through kvm_set_apic_base() while fudging
the ENABLE bit during creation to avoid the other, unwanted side effects.
This is a step towards consolidating the APIC RESET logic across x86,
VMX, and SVM.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-18-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Set the BSP bit appropriately during local APIC "reset" instead of
relying on vendor code to clean up at a later point. This is a step
towards consolidating the local APIC, VMX, and SVM xAPIC initialization
code.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-16-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't set the BSP bit in vcpu->arch.apic_base when the local APIC is
managed by userspace. Forcing all vCPUs to be BSPs is non-sensical, and
was dead code when it was added by commit 97222cc831 ("KVM: Emulate
local APIC in kernel"). At the time, kvm_lapic_set_base() was invoked
if and only if the local APIC was in-kernel (and it couldn't be called
before the vCPU created its APIC).
kvm_lapic_set_base() eventually gained generic usage, but the latent bug
escaped notice because the only true consumer would be the guest itself
in the form of an explicit RDMSRs on APs. Out of Linux, SeaBIOS, and
EDK2/OVMF, only OVMF consumes the BSP bit from the APIC_BASE MSR. For
the vast majority of usage in OVMF, BSP confusion would be benign.
OVMF's BSP election upon SMI rendezvous might be broken, but practically
no one runs KVM with an out-of-kernel local APIC, let alone does so while
utilizing SMIs with OVMF.
Fixes: 97222cc831 ("KVM: Emulate local APIC in kernel")
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-15-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove a BSP APIC update in kvm_lapic_reset() that is a glorified and
confusing nop. When the code was originally added, kvm_vcpu_is_bsp()
queried kvm->arch.bsp_vcpu, i.e. the intent was to set the BSP bit in the
BSP vCPU's APIC. But, stuffing the BSP bit at INIT was wrong since the
guest can change its BSP(s); this was fixed by commit 58d269d8cc ("KVM:
x86: BSP in MSR_IA32_APICBASE is writable").
In other words, kvm_vcpu_is_bsp() is now purely a reflection of
vcpu->arch.apic_base.MSR_IA32_APICBASE_BSP, thus the update will always
set the current value and kvm_lapic_set_base() is effectively a nop if
the new and old values match. The RESET case, which does need to stuff
the BSP for the reset vCPU, is handled by vendor code (though this will
soon be moved to common code).
No functional change intended.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-13-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
WARN if KVM ends up in a state where it thinks its APIC map needs to be
recalculated, but KVM is not emulating the local APIC. This is mostly
to document KVM's "rules" in order to provide clarity in future cleanups.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-12-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM_GET_LAPIC stores the current value of TMCCT and KVM_SET_LAPIC's memcpy
stores it in vcpu->arch.apic->regs, KVM_SET_LAPIC could store zero in
vcpu->arch.apic->regs after it uses it, and then the stored value would
always be zero. In addition, the TMCCT is always computed on-demand and
never directly readable.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1623223000-18116-1-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Per the SDM, "any access that touches bytes 4 through 15 of an APIC
register may cause undefined behavior and must not be executed."
Worse, such an access in kvm_lapic_reg_read can result in a leak of
kernel stack contents. Prior to commit 01402cf810 ("kvm: LAPIC:
write down valid APIC registers"), such an access was explicitly
disallowed. Restore the guard that was removed in that commit.
Fixes: 01402cf810 ("kvm: LAPIC: write down valid APIC registers")
Signed-off-by: Jim Mattson <jmattson@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Message-Id: <20210602205224.3189316-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to the SDM 10.5.4.1:
A write of 0 to the initial-count register effectively stops the local
APIC timer, in both one-shot and periodic mode.
However, the lapic timer oneshot/periodic mode which is emulated by vmx-preemption
timer doesn't stop by writing 0 to TMICT since vmx->hv_deadline_tsc is still
programmed and the guest will receive the spurious timer interrupt later. This
patch fixes it by also cancelling the vmx-preemption timer when writing 0 to
the initial-count register.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1623050385-100988-1-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM_REQ_UNBLOCK will be used to exit a vcpu from
its inner vcpu halt emulation loop.
Rename KVM_REQ_PENDING_TIMER to KVM_REQ_UNBLOCK, switch
PowerPC to arch specific request bit.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Message-Id: <20210525134321.303768132@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Let's treat lapic_timer_advance_ns automatic tuning logic as hypervisor
overhead, move it before wait_lapic_expire instead of between wait_lapic_expire
and the world switch, the wait duration should be calculated by the
up-to-date guest_tsc after the overhead of automatic tuning logic. This
patch reduces ~30+ cycles for kvm-unit-tests/tscdeadline-latency when testing
busy waits.
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1621339235-11131-5-git-send-email-wanpengli@tencent.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit ee66e453db (KVM: lapic: Busy wait for timer to expire when
using hv_timer) tries to set ktime->expired_tscdeadline by checking
ktime->hv_timer_in_use since lapic timer oneshot/periodic modes which
are emulated by vmx preemption timer also get advanced, they leverage
the same vmx preemption timer logic with tsc-deadline mode. However,
ktime->hv_timer_in_use is cleared before apic_timer_expired() handling,
let's delay this clearing in preemption-disabled region.
Fixes: ee66e453db ("KVM: lapic: Busy wait for timer to expire when using hv_timer")
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1619608082-4187-1-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Async PF 'page ready' event may happen when LAPIC is (temporary) disabled.
In particular, Sebastien reports that when Linux kernel is directly booted
by Cloud Hypervisor, LAPIC is 'software disabled' when APF mechanism is
initialized. On initialization KVM tries to inject 'wakeup all' event and
puts the corresponding token to the slot. It is, however, failing to inject
an interrupt (kvm_apic_set_irq() -> __apic_accept_irq() -> !apic_enabled())
so the guest never gets notified and the whole APF mechanism gets stuck.
The same issue is likely to happen if the guest temporary disables LAPIC
and a previously unavailable page becomes available.
Do two things to resolve the issue:
- Avoid dequeuing 'page ready' events from APF queue when LAPIC is
disabled.
- Trigger an attempt to deliver pending 'page ready' events when LAPIC
becomes enabled (SPIV or MSR_IA32_APICBASE).
Reported-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210422092948.568327-1-vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Synthesize a nested VM-Exit if L2 triggers an emulated triple fault
instead of exiting to userspace, which likely will kill L1. Any flow
that does KVM_REQ_TRIPLE_FAULT is suspect, but the most common scenario
for L2 killing L1 is if L0 (KVM) intercepts a contributory exception that
is _not_intercepted by L1. E.g. if KVM is intercepting #GPs for the
VMware backdoor, a #GP that occurs in L2 while vectoring an injected #DF
will cause KVM to emulate triple fault.
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210302174515.2812275-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When posting a deadline timer interrupt, open code the checks guarding
__kvm_wait_lapic_expire() in order to skip the lapic_timer_int_injected()
check in kvm_wait_lapic_expire(). The injection check will always fail
since the interrupt has not yet be injected. Moving the call after
injection would also be wrong as that wouldn't actually delay delivery
of the IRQ if it is indeed sent via posted interrupt.
Fixes: 010fd37fdd ("KVM: LAPIC: Reduce world switch latency caused by timer_advance_ns")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210305021808.3769732-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, Hyper-V context is part of 'struct kvm_vcpu_arch' and is always
available. As a preparation to allocating it dynamically, check that it is
not NULL at call sites which can normally proceed without it i.e. the
behavior is identical to the situation when Hyper-V emulation is not being
used by the guest.
When Hyper-V context for a particular vCPU is not allocated, we may still
need to get 'vp_index' from there. E.g. in a hypothetical situation when
Hyper-V emulation was enabled on one CPU and wasn't on another, Hyper-V
style send-IPI hypercall may still be used. Luckily, vp_index is always
initialized to kvm_vcpu_get_idx() and can only be changed when Hyper-V
context is present. Introduce kvm_hv_get_vpindex() helper for
simplification.
No functional change intended.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210126134816.1880136-12-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
vcpu_to_synic()'s argument is almost always 'vcpu' so there's no need to
have an additional prefix. Also, as this is used outside of hyper-v
emulation code, add '_hv_' part to make it clear what this s. This makes
the naming more consistent with to_hv_vcpu().
Rename synic_to_vcpu() to hv_synic_to_vcpu() for consistency.
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210126134816.1880136-6-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Convert kvm_x86_ops to use static calls. Note that all kvm_x86_ops are
covered here except for 'pmu_ops and 'nested ops'.
Here are some numbers running cpuid in a loop of 1 million calls averaged
over 5 runs, measured in the vm (lower is better).
Intel Xeon 3000MHz:
|default |mitigations=off
-------------------------------------
vanilla |.671s |.486s
static call|.573s(-15%)|.458s(-6%)
AMD EPYC 2500MHz:
|default |mitigations=off
-------------------------------------
vanilla |.710s |.609s
static call|.664s(-6%) |.609s(0%)
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Signed-off-by: Jason Baron <jbaron@akamai.com>
Message-Id: <e057bf1b8a7ad15652df6eeba3f907ae758d3399.1610680941.git.jbaron@akamai.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The use of 'struct static_key' and 'static_key_false' is
deprecated. Use the new API.
Signed-off-by: Cun Li <cun.jia.li@gmail.com>
Message-Id: <20210111152435.50275-1-cun.jia.li@gmail.com>
[Make it compile. While at it, rename kvm_no_apic_vcpu to
kvm_has_noapic_vcpu; the former reads too much like "true if
no vCPU has an APIC". - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Typically under KVM, an AP is booted using the INIT-SIPI-SIPI sequence,
where the guest vCPU register state is updated and then the vCPU is VMRUN
to begin execution of the AP. For an SEV-ES guest, this won't work because
the guest register state is encrypted.
Following the GHCB specification, the hypervisor must not alter the guest
register state, so KVM must track an AP/vCPU boot. Should the guest want
to park the AP, it must use the AP Reset Hold exit event in place of, for
example, a HLT loop.
First AP boot (first INIT-SIPI-SIPI sequence):
Execute the AP (vCPU) as it was initialized and measured by the SEV-ES
support. It is up to the guest to transfer control of the AP to the
proper location.
Subsequent AP boot:
KVM will expect to receive an AP Reset Hold exit event indicating that
the vCPU is being parked and will require an INIT-SIPI-SIPI sequence to
awaken it. When the AP Reset Hold exit event is received, KVM will place
the vCPU into a simulated HLT mode. Upon receiving the INIT-SIPI-SIPI
sequence, KVM will make the vCPU runnable. It is again up to the guest
to then transfer control of the AP to the proper location.
To differentiate between an actual HLT and an AP Reset Hold, a new MP
state is introduced, KVM_MP_STATE_AP_RESET_HOLD, which the vCPU is
placed in upon receiving the AP Reset Hold exit event. Additionally, to
communicate the AP Reset Hold exit event up to userspace (if needed), a
new exit reason is introduced, KVM_EXIT_AP_RESET_HOLD.
A new x86 ops function is introduced, vcpu_deliver_sipi_vector, in order
to accomplish AP booting. For VMX, vcpu_deliver_sipi_vector is set to the
original SIPI delivery function, kvm_vcpu_deliver_sipi_vector(). SVM adds
a new function that, for non SEV-ES guests, invokes the original SIPI
delivery function, kvm_vcpu_deliver_sipi_vector(), but for SEV-ES guests,
implements the logic above.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <e8fbebe8eb161ceaabdad7c01a5859a78b424d5e.1609791600.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In the commit 1c96dcceae
("KVM: x86: fix apic_accept_events vs check_nested_events"),
we accidently started latching SIPIs that are received while the cpu is not
waiting for them.
This causes vCPUs to never enter a halted state.
Fixes: 1c96dcceae ("KVM: x86: fix apic_accept_events vs check_nested_events")
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20201203143319.159394-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Centralize handling of interrupts from the userspace APIC
in kvm_cpu_has_extint and kvm_cpu_get_extint, since
userspace APIC interrupts are handled more or less the
same as ExtINTs are with split irqchip. This removes
duplicated code from kvm_cpu_has_injectable_intr and
kvm_cpu_has_interrupt, and makes the code more similar
between kvm_cpu_has_{extint,interrupt} on one side
and kvm_cpu_get_{extint,interrupt} on the other.
Cc: stable@vger.kernel.org
Reviewed-by: Filippo Sironi <sironi@amazon.de>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Tested-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
vmx_apic_init_signal_blocked is buggy in that it returns true
even in VMX non-root mode. In non-root mode, however, INITs
are not latched, they just cause a vmexit. Previously,
KVM was waiting for them to be processed when kvm_apic_accept_events
and in the meanwhile it ate the SIPIs that the processor received.
However, in order to implement the wait-for-SIPI activity state,
KVM will have to process KVM_APIC_SIPI in vmx_check_nested_events,
and it will not be possible anymore to disregard SIPIs in non-root
mode as the code is currently doing.
By calling kvm_x86_ops.nested_ops->check_events, we can force a vmexit
(with the side-effect of latching INITs) before incorrectly injecting
an INIT or SIPI in a guest, and therefore vmx_apic_init_signal_blocked
can do the right thing.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
On successful nested VM-Enter, check for pending interrupts and convert
the highest priority interrupt to a pending posted interrupt if it
matches L2's notification vector. If the vCPU receives a notification
interrupt before nested VM-Enter (assuming L1 disables IRQs before doing
VM-Enter), the pending interrupt (for L1) should be recognized and
processed as a posted interrupt when interrupts become unblocked after
VM-Enter to L2.
This fixes a bug where L1/L2 will get stuck in an infinite loop if L1 is
trying to inject an interrupt into L2 by setting the appropriate bit in
L2's PIR and sending a self-IPI prior to VM-Enter (as opposed to KVM's
method of manually moving the vector from PIR->vIRR/RVI). KVM will
observe the IPI while the vCPU is in L1 context and so won't immediately
morph it to a posted interrupt for L2. The pending interrupt will be
seen by vmx_check_nested_events(), cause KVM to force an immediate exit
after nested VM-Enter, and eventually be reflected to L1 as a VM-Exit.
After handling the VM-Exit, L1 will see that L2 has a pending interrupt
in PIR, send another IPI, and repeat until L2 is killed.
Note, posted interrupts require virtual interrupt deliveriy, and virtual
interrupt delivery requires exit-on-interrupt, ergo interrupts will be
unconditionally unmasked on VM-Enter if posted interrupts are enabled.
Fixes: 705699a139 ("KVM: nVMX: Enable nested posted interrupt processing")
Cc: stable@vger.kernel.org
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200812175129.12172-1-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
All the checks in lapic_timer_int_injected(), __kvm_wait_lapic_expire(), and
these function calls waste cpu cycles when the timer mode is not tscdeadline.
We can observe ~1.3% world switch time overhead by kvm-unit-tests/vmexit.flat
vmcall testing on AMD server. This patch reduces the world switch latency
caused by timer_advance_ns feature when the timer mode is not tscdeadline by
simpling move the check against apic->lapic_timer.expired_tscdeadline much
earlier.
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1599731444-3525-7-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The kick after setting KVM_REQ_PENDING_TIMER is used to handle the timer
fires on a different pCPU which vCPU is running on. This kick costs about
1000 clock cycles and we don't need this when injecting already-expired
timer or when using the VMX preemption timer because
kvm_lapic_expired_hv_timer() is called from the target vCPU.
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1599731444-3525-6-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There is missing apic map recalculation after updating DFR, if it is
INIT RESET, in x2apic mode, local apic is software enabled before.
This patch fix it by introducing the function kvm_apic_set_dfr() to
be called in INIT RESET handling path.
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1597827327-25055-1-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull KVM updates from Paolo Bonzini:
"s390:
- implement diag318
x86:
- Report last CPU for debugging
- Emulate smaller MAXPHYADDR in the guest than in the host
- .noinstr and tracing fixes from Thomas
- nested SVM page table switching optimization and fixes
Generic:
- Unify shadow MMU cache data structures across architectures"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (127 commits)
KVM: SVM: Fix sev_pin_memory() error handling
KVM: LAPIC: Set the TDCR settable bits
KVM: x86: Specify max TDP level via kvm_configure_mmu()
KVM: x86/mmu: Rename max_page_level to max_huge_page_level
KVM: x86: Dynamically calculate TDP level from max level and MAXPHYADDR
KVM: VXM: Remove temporary WARN on expected vs. actual EPTP level mismatch
KVM: x86: Pull the PGD's level from the MMU instead of recalculating it
KVM: VMX: Make vmx_load_mmu_pgd() static
KVM: x86/mmu: Add separate helper for shadow NPT root page role calc
KVM: VMX: Drop a duplicate declaration of construct_eptp()
KVM: nSVM: Correctly set the shadow NPT root level in its MMU role
KVM: Using macros instead of magic values
MIPS: KVM: Fix build error caused by 'kvm_run' cleanup
KVM: nSVM: remove nonsensical EXITINFO1 adjustment on nested NPF
KVM: x86: Add a capability for GUEST_MAXPHYADDR < HOST_MAXPHYADDR support
KVM: VMX: optimize #PF injection when MAXPHYADDR does not match
KVM: VMX: Add guest physical address check in EPT violation and misconfig
KVM: VMX: introduce vmx_need_pf_intercept
KVM: x86: update exception bitmap on CPUID changes
KVM: x86: rename update_bp_intercept to update_exception_bitmap
...
It is a little different between Intel and AMD, Intel's bit 2
is 0 and AMD is reserved. On bare-metal, Intel will refuse to set
APIC_TDCR once bits except 0, 1, 3 are setting, however, AMD will
accept bits 0, 1, 3 and ignore other bits setting as patch does.
Before the patch, we can get back anything what we set to the
APIC_TDCR, this patch improves it.
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1596165141-28874-2-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Beside called in kvm_vcpu_ioctl_set_cpuid*(), kvm_update_cpuid() is also
called 5 places else in x86.c and 1 place else in lapic.c. All those 6
places only need the part of updating guest CPUIDs (OSXSAVE, OSPKE, APIC,
KVM_FEATURE_PV_UNHALT, ...) based on the runtime vcpu state, so extract
them as a separate kvm_update_cpuid_runtime().
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20200709043426.92712-3-xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>