[Backport: resolve conflicts caused by CONFIG_CMA.]
KASAN changes that added new GFP flags mistakenly updated
__GFP_BITS_SHIFT as the total number of GFP bits instead of as a shift
used to define __GFP_BITS_MASK.
This broke LOCKDEP, as __GFP_BITS_MASK now gets the 25th bit enabled
instead of the 28th for __GFP_NOLOCKDEP.
Update __GFP_BITS_SHIFT to always count KASAN GFP bits.
In the future, we could handle all combinations of KASAN and LOCKDEP to
occupy as few bits as possible. For now, we have enough GFP bits to be
inefficient in this quick fix.
Link: https://lkml.kernel.org/r/462ff52742a1fcc95a69778685737f723ee4dfb3.1648400273.git.andreyknvl@google.com
Fixes: 9353ffa6e9e9 ("kasan, page_alloc: allow skipping memory init for HW_TAGS")
Fixes: 53ae233c30a6 ("kasan, page_alloc: allow skipping unpoisoning for HW_TAGS")
Fixes: f49d9c5bb15c ("kasan, mm: only define ___GFP_SKIP_KASAN_POISON with HW_TAGS")
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reported-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Tested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(cherry picked from commit 78d104f8b401c81d140adad91e027d7d83b3315c)
Bug: 217222520
Change-Id: I82484635012c5773c6ef9164a9368d9e61157f87
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
(Backport: adapt the patch to account for added GFP flags and
__GFP_BITS_SHIFT definition changes;
don't try to pack all flags to avoid macro mess.)
Add a new GFP flag __GFP_SKIP_ZERO that allows to skip memory
initialization. The flag is only effective with HW_TAGS KASAN.
This flag will be used by vmalloc code for page_alloc allocations backing
vmalloc() mappings in a following patch. The reason to skip memory
initialization for these pages in page_alloc is because vmalloc code will
be initializing them instead.
With the current implementation, when __GFP_SKIP_ZERO is provided,
__GFP_ZEROTAGS is ignored. This doesn't matter, as these two flags are
never provided at the same time. However, if this is changed in the
future, this particular implementation detail can be changed as well.
Link: https://lkml.kernel.org/r/0d53efeff345de7d708e0baa0d8829167772521e.1643047180.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
(cherry picked from commit db88e21f5cce8c45f7973a272c3bd60440f0e1b2
git://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git akpm)
Bug: 217222520
Change-Id: I617be9a6e1480a204edea41a3627fb6a41733753
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
(Backport: adapt the patch to account for added GFP flags and
__GFP_BITS_SHIFT definition changes;
don't try to pack all flags to avoid macro mess.)
Add a new GFP flag __GFP_SKIP_KASAN_UNPOISON that allows skipping KASAN
poisoning for page_alloc allocations. The flag is only effective with
HW_TAGS KASAN.
This flag will be used by vmalloc code for page_alloc allocations backing
vmalloc() mappings in a following patch. The reason to skip KASAN
poisoning for these pages in page_alloc is because vmalloc code will be
poisoning them instead.
Also reword the comment for __GFP_SKIP_KASAN_POISON.
Link: https://lkml.kernel.org/r/35c97d77a704f6ff971dd3bfe4be95855744108e.1643047180.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
(cherry picked from commit 9a47b06547a9c28d2899b27888bc006422d29554
git://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git akpm)
Bug: 217222520
Change-Id: I9c52fa6370c6fd19d23edaed1a082cae946e2ef5
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
CMA pages are designed to be used as fallback for movable allocations
and cannot be used for non-movable allocations. If CMA pages are
utilized poorly, non-movable allocations may end up getting starved if
all regular movable pages are allocated and the only pages left are
CMA. Always using CMA pages first creates unacceptable performance
problems. As a midway alternative, use CMA pages for certain
userspace allocations. The userspace pages can be migrated or dropped
quickly which giving decent utilization.
Additionally, add a fall-backs for failed CMA allocations in rmqueue()
and __rmqueue_pcplist() (the latter addition being driven by a report
by the kernel test robot); these fallbacks were dealt with differently
in the original version of the patch as the rmqueue() call chain has
changed).
Bug: 158645321
Link: https://lore.kernel.org/lkml/cover.1604282969.git.cgoldswo@codeaurora.org/
Reported-by: kernel test robot <rong.a.chen@intel.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
Signed-off-by: Heesub Shin <heesub.shin@samsung.com>
Signed-off-by: Vinayak Menon <vinmenon@codeaurora.org>
[cgoldswo@codeaurora.org: Place in bugfixes; remove cma_alloc zone flag]
Signed-off-by: Chris Goldsworthy <cgoldswo@codeaurora.org>
[isaacm@codeaurora.org: Resolve merge conflicts to account for new mm
features]
Signed-off-by: Isaac J. Manjarres <isaacm@codeaurora.org>
Change-Id: I3dfbc42f1d12416143550042182bf16030ca7190
Merge misc updates from Andrew Morton:
"191 patches.
Subsystems affected by this patch series: kthread, ia64, scripts,
ntfs, squashfs, ocfs2, kernel/watchdog, and mm (gup, pagealloc, slab,
slub, kmemleak, dax, debug, pagecache, gup, swap, memcg, pagemap,
mprotect, bootmem, dma, tracing, vmalloc, kasan, initialization,
pagealloc, and memory-failure)"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (191 commits)
mm,hwpoison: make get_hwpoison_page() call get_any_page()
mm,hwpoison: send SIGBUS with error virutal address
mm/page_alloc: split pcp->high across all online CPUs for cpuless nodes
mm/page_alloc: allow high-order pages to be stored on the per-cpu lists
mm: replace CONFIG_FLAT_NODE_MEM_MAP with CONFIG_FLATMEM
mm: replace CONFIG_NEED_MULTIPLE_NODES with CONFIG_NUMA
docs: remove description of DISCONTIGMEM
arch, mm: remove stale mentions of DISCONIGMEM
mm: remove CONFIG_DISCONTIGMEM
m68k: remove support for DISCONTIGMEM
arc: remove support for DISCONTIGMEM
arc: update comment about HIGHMEM implementation
alpha: remove DISCONTIGMEM and NUMA
mm/page_alloc: move free_the_page
mm/page_alloc: fix counting of managed_pages
mm/page_alloc: improve memmap_pages dbg msg
mm: drop SECTION_SHIFT in code comments
mm/page_alloc: introduce vm.percpu_pagelist_high_fraction
mm/page_alloc: limit the number of pages on PCP lists when reclaim is active
mm/page_alloc: scale the number of pages that are batch freed
...
Poisoning freed pages protects against kernel use-after-free. The
likelihood of such a bug involving kernel pages is significantly higher
than that for user pages. At the same time, poisoning freed pages can
impose a significant performance cost, which cannot always be justified
for user pages given the lower probability of finding a bug. Therefore,
disable freed user page poisoning when using HW tags. We identify
"user" pages via the flag set GFP_HIGHUSER_MOVABLE, which indicates
a strong likelihood of not being directly accessible to the kernel.
Signed-off-by: Peter Collingbourne <pcc@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Link: https://linux-review.googlesource.com/id/I716846e2de8ef179f44e835770df7e6307be96c9
Link: https://lore.kernel.org/r/20210602235230.3928842-5-pcc@google.com
Signed-off-by: Will Deacon <will@kernel.org>
Currently, on an anonymous page fault, the kernel allocates a zeroed
page and maps it in user space. If the mapping is tagged (PROT_MTE),
set_pte_at() additionally clears the tags. It is, however, more
efficient to clear the tags at the same time as zeroing the data on
allocation. To avoid clearing the tags on any page (which may not be
mapped as tagged), only do this if the vma flags contain VM_MTE. This
requires introducing a new GFP flag that is used to determine whether
to clear the tags.
The DC GZVA instruction with a 0 top byte (and 0 tag) requires
top-byte-ignore. Set the TCR_EL1.{TBI1,TBID1} bits irrespective of
whether KASAN_HW is enabled.
Signed-off-by: Peter Collingbourne <pcc@google.com>
Co-developed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://linux-review.googlesource.com/id/Id46dc94e30fe11474f7e54f5d65e7658dbdddb26
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Link: https://lore.kernel.org/r/20210602235230.3928842-4-pcc@google.com
Signed-off-by: Will Deacon <will@kernel.org>
One giant leap, all the way up to 5.13-rc1
Also take the opportunity to re-align (a.k.a. fix a couple of previous
merge conflict fix-up issues) which occurred during this merge-window.
Fixes: 4797acfb9c ("Merge 16b3d0cf5b Merge tag 'sched-core-2021-04-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip into android-mainline")
Fixes: 92f282f338 ("Merge 8ca5297e7e Merge tag 'kconfig-v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild into android-mainline")
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Change-Id: Ie9389f595776e8f66bba6eaf0fa7a3587c6a5749
Steps on the way to 5.12-rc1
Resolves merge conflicts in:
drivers/dma-buf/dma-heap.c
drivers/dma-buf/heaps/cma_heap.c
drivers/dma-buf/heaps/system_heap.c
include/linux/dma-heap.h
Cc: John Stultz <john.stultz@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
Change-Id: Ibb32dbdba5183c9e19f5d1e94016cc1ae9616173
Patch series "mm,thp,shm: limit shmem THP alloc gfp_mask", v6.
The allocation flags of anonymous transparent huge pages can be controlled
through the files in /sys/kernel/mm/transparent_hugepage/defrag, which can
help the system from getting bogged down in the page reclaim and
compaction code when many THPs are getting allocated simultaneously.
However, the gfp_mask for shmem THP allocations were not limited by those
configuration settings, and some workloads ended up with all CPUs stuck on
the LRU lock in the page reclaim code, trying to allocate dozens of THPs
simultaneously.
This patch applies the same configurated limitation of THPs to shmem
hugepage allocations, to prevent that from happening.
This way a THP defrag setting of "never" or "defer+madvise" will result in
quick allocation failures without direct reclaim when no 2MB free pages
are available.
With this patch applied, THP allocations for tmpfs will be a little more
aggressive than today for files mmapped with MADV_HUGEPAGE, and a little
less aggressive for files that are not mmapped or mapped without that
flag.
This patch (of 4):
The allocation flags of anonymous transparent huge pages can be controlled
through the files in /sys/kernel/mm/transparent_hugepage/defrag, which can
help the system from getting bogged down in the page reclaim and
compaction code when many THPs are getting allocated simultaneously.
However, the gfp_mask for shmem THP allocations were not limited by those
configuration settings, and some workloads ended up with all CPUs stuck on
the LRU lock in the page reclaim code, trying to allocate dozens of THPs
simultaneously.
This patch applies the same configurated limitation of THPs to shmem
hugepage allocations, to prevent that from happening.
Controlling the gfp_mask of THP allocations through the knobs in sysfs
allows users to determine the balance between how aggressively the system
tries to allocate THPs at fault time, and how much the application may end
up stalling attempting those allocations.
This way a THP defrag setting of "never" or "defer+madvise" will result in
quick allocation failures without direct reclaim when no 2MB free pages
are available.
With this patch applied, THP allocations for tmpfs will be a little more
aggressive than today for files mmapped with MADV_HUGEPAGE, and a little
less aggressive for files that are not mmapped or mapped without that
flag.
Link: https://lkml.kernel.org/r/20201124194925.623931-1-riel@surriel.com
Link: https://lkml.kernel.org/r/20201124194925.623931-2-riel@surriel.com
Signed-off-by: Rik van Riel <riel@surriel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Xu Yu <xuyu@linux.alibaba.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
First steps of the 5.12-rc1 merge, the large networking chunk.
Resolves merge conflicts in:
net/core/filter.c
net/ipv6/route.c
Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
Change-Id: Id1650a4e7ab7104647e85beddddb672f779d4d1f
In the current implementation of page_frag_alloc(), it doesn't have
any align guarantee for the returned buffer address. But for some
hardwares they do require the DMA buffer to be aligned correctly,
so we would have to use some workarounds like below if the buffers
allocated by the page_frag_alloc() are used by these hardwares for
DMA.
buf = page_frag_alloc(really_needed_size + align);
buf = PTR_ALIGN(buf, align);
These codes seems ugly and would waste a lot of memories if the buffers
are used in a network driver for the TX/RX. So introduce
page_frag_alloc_align() to make sure that an aligned buffer address is
returned.
Signed-off-by: Kevin Hao <haokexin@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Alexander Duyck <alexanderduyck@fb.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Create a vendor hook inside of gfp_zone() to modify which allocations
get to enter ZONE_MOVABLE, by zeroing out __GFP_HIGHMEM inside of the
trace hook based on certain conditions.
Separately, create separate trace hooks in the swap-in and readahead
paths to affect the behavior of the tracehook in gfp_zone().
Bug: 158645321
Change-Id: I4a4f0b724267ee120a1e5661f6da5d43d7ef6fc6
Signed-off-by: Chris Goldsworthy <cgoldswo@codeaurora.org>
CMA pages are designed to be used as fallback for movable allocations
and cannot be used for non-movable allocations. If CMA pages are
utilized poorly, non-movable allocations may end up getting starved if
all regular movable pages are allocated and the only pages left are
CMA. Always using CMA pages first creates unacceptable performance
problems. As a midway alternative, use CMA pages for certain
userspace allocations. The userspace pages can be migrated or dropped
quickly which giving decent utilization.
Additionally, add a fall-backs for failed CMA allocations in rmqueue()
and __rmqueue_pcplist() (the latter addition being driven by a report
by the kernel test robot); these fallbacks were dealt with differently
in the original version of the patch as the rmqueue() call chain has
changed).
Bug: 158645321
Link: https://lore.kernel.org/lkml/cover.1604282969.git.cgoldswo@codeaurora.org/
Reported-by: kernel test robot <rong.a.chen@intel.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
Signed-off-by: Heesub Shin <heesub.shin@samsung.com>
Signed-off-by: Vinayak Menon <vinmenon@codeaurora.org>
[cgoldswo@codeaurora.org: Place in bugfixes; remove cma_alloc zone flag]
Signed-off-by: Chris Goldsworthy <cgoldswo@codeaurora.org>
Change-Id: Ibca5eedfc5eacd44542ad483851d741166715f84
Pull dma-mapping updates from Christoph Hellwig:
- rework the non-coherent DMA allocator
- move private definitions out of <linux/dma-mapping.h>
- lower CMA_ALIGNMENT (Paul Cercueil)
- remove the omap1 dma address translation in favor of the common code
- make dma-direct aware of multiple dma offset ranges (Jim Quinlan)
- support per-node DMA CMA areas (Barry Song)
- increase the default seg boundary limit (Nicolin Chen)
- misc fixes (Robin Murphy, Thomas Tai, Xu Wang)
- various cleanups
* tag 'dma-mapping-5.10' of git://git.infradead.org/users/hch/dma-mapping: (63 commits)
ARM/ixp4xx: add a missing include of dma-map-ops.h
dma-direct: simplify the DMA_ATTR_NO_KERNEL_MAPPING handling
dma-direct: factor out a dma_direct_alloc_from_pool helper
dma-direct check for highmem pages in dma_direct_alloc_pages
dma-mapping: merge <linux/dma-noncoherent.h> into <linux/dma-map-ops.h>
dma-mapping: move large parts of <linux/dma-direct.h> to kernel/dma
dma-mapping: move dma-debug.h to kernel/dma/
dma-mapping: remove <asm/dma-contiguous.h>
dma-mapping: merge <linux/dma-contiguous.h> into <linux/dma-map-ops.h>
dma-contiguous: remove dma_contiguous_set_default
dma-contiguous: remove dev_set_cma_area
dma-contiguous: remove dma_declare_contiguous
dma-mapping: split <linux/dma-mapping.h>
cma: decrease CMA_ALIGNMENT lower limit to 2
firewire-ohci: use dma_alloc_pages
dma-iommu: implement ->alloc_noncoherent
dma-mapping: add new {alloc,free}_noncoherent dma_map_ops methods
dma-mapping: add a new dma_alloc_pages API
dma-mapping: remove dma_cache_sync
53c700: convert to dma_alloc_noncoherent
...
There is a general understanding that GFP_ATOMIC/GFP_NOWAIT are to be used
from atomic contexts. E.g. from within a spin lock or from the IRQ
context. This is correct but there are some atomic contexts where the
above doesn't hold. One of them would be an NMI context. Page allocator
has never supported that and the general fear of this context didn't let
anybody to actually even try to use the allocator there. Good, but let's
be more specific about that.
Another such a context, and that is where people seem to be more daring,
is raw_spin_lock. Mostly because it simply resembles regular spin lock
which is supported by the allocator and there is not any implementation
difference with !RT kernels in the first place. Be explicit that such a
context is not supported by the allocator. The underlying reason is that
zone->lock would have to become raw_spin_lock as well and that has turned
out to be a problem for RT
(http://lkml.kernel.org/r/87mu305c1w.fsf@nanos.tec.linutronix.de).
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Uladzislau Rezki <urezki@gmail.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Link: https://lkml.kernel.org/r/20200929123010.5137-1-mhocko@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To prevent a compiler error when a method call alloc_pages is
added (which I plan to for the dma_map_ops).
Signed-off-by: Christoph Hellwig <hch@lst.de>
With the introduction of protected KVM guests on s390 there is now a
concept of inaccessible pages. These pages need to be made accessible
before the host can access them.
While cpu accesses will trigger a fault that can be resolved, I/O accesses
will just fail. We need to add a callback into architecture code for
places that will do I/O, namely when writeback is started or when a page
reference is taken.
This is not only to enable paging, file backing etc, it is also necessary
to protect the host against a malicious user space. For example a bad
QEMU could simply start direct I/O on such protected memory. We do not
want userspace to be able to trigger I/O errors and thus the logic is
"whenever somebody accesses that page (gup) or does I/O, make sure that
this page can be accessed". When the guest tries to access that page we
will wait in the page fault handler for writeback to have finished and for
the page_ref to be the expected value.
On s390x the function is not supposed to fail, so it is ok to use a
WARN_ON on failure. If we ever need some more finegrained handling we can
tackle this when we know the details.
Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Acked-by: Will Deacon <will@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Link: http://lkml.kernel.org/r/20200306132537.783769-3-imbrenda@linux.ibm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
sk_page_frag() optimizes skb_frag allocations by using per-task
skb_frag cache when it knows it's the only user. The condition is
determined by seeing whether the socket allocation mask allows
blocking - if the allocation may block, it obviously owns the task's
context and ergo exclusively owns current->task_frag.
Unfortunately, this misses recursion through memory reclaim path.
Please take a look at the following backtrace.
[2] RIP: 0010:tcp_sendmsg_locked+0xccf/0xe10
...
tcp_sendmsg+0x27/0x40
sock_sendmsg+0x30/0x40
sock_xmit.isra.24+0xa1/0x170 [nbd]
nbd_send_cmd+0x1d2/0x690 [nbd]
nbd_queue_rq+0x1b5/0x3b0 [nbd]
__blk_mq_try_issue_directly+0x108/0x1b0
blk_mq_request_issue_directly+0xbd/0xe0
blk_mq_try_issue_list_directly+0x41/0xb0
blk_mq_sched_insert_requests+0xa2/0xe0
blk_mq_flush_plug_list+0x205/0x2a0
blk_flush_plug_list+0xc3/0xf0
[1] blk_finish_plug+0x21/0x2e
_xfs_buf_ioapply+0x313/0x460
__xfs_buf_submit+0x67/0x220
xfs_buf_read_map+0x113/0x1a0
xfs_trans_read_buf_map+0xbf/0x330
xfs_btree_read_buf_block.constprop.42+0x95/0xd0
xfs_btree_lookup_get_block+0x95/0x170
xfs_btree_lookup+0xcc/0x470
xfs_bmap_del_extent_real+0x254/0x9a0
__xfs_bunmapi+0x45c/0xab0
xfs_bunmapi+0x15/0x30
xfs_itruncate_extents_flags+0xca/0x250
xfs_free_eofblocks+0x181/0x1e0
xfs_fs_destroy_inode+0xa8/0x1b0
destroy_inode+0x38/0x70
dispose_list+0x35/0x50
prune_icache_sb+0x52/0x70
super_cache_scan+0x120/0x1a0
do_shrink_slab+0x120/0x290
shrink_slab+0x216/0x2b0
shrink_node+0x1b6/0x4a0
do_try_to_free_pages+0xc6/0x370
try_to_free_mem_cgroup_pages+0xe3/0x1e0
try_charge+0x29e/0x790
mem_cgroup_charge_skmem+0x6a/0x100
__sk_mem_raise_allocated+0x18e/0x390
__sk_mem_schedule+0x2a/0x40
[0] tcp_sendmsg_locked+0x8eb/0xe10
tcp_sendmsg+0x27/0x40
sock_sendmsg+0x30/0x40
___sys_sendmsg+0x26d/0x2b0
__sys_sendmsg+0x57/0xa0
do_syscall_64+0x42/0x100
entry_SYSCALL_64_after_hwframe+0x44/0xa9
In [0], tcp_send_msg_locked() was using current->page_frag when it
called sk_wmem_schedule(). It already calculated how many bytes can
be fit into current->page_frag. Due to memory pressure,
sk_wmem_schedule() called into memory reclaim path which called into
xfs and then IO issue path. Because the filesystem in question is
backed by nbd, the control goes back into the tcp layer - back into
tcp_sendmsg_locked().
nbd sets sk_allocation to (GFP_NOIO | __GFP_MEMALLOC) which makes
sense - it's in the process of freeing memory and wants to be able to,
e.g., drop clean pages to make forward progress. However, this
confused sk_page_frag() called from [2]. Because it only tests
whether the allocation allows blocking which it does, it now thinks
current->page_frag can be used again although it already was being
used in [0].
After [2] used current->page_frag, the offset would be increased by
the used amount. When the control returns to [0],
current->page_frag's offset is increased and the previously calculated
number of bytes now may overrun the end of allocated memory leading to
silent memory corruptions.
Fix it by adding gfpflags_normal_context() which tests sleepable &&
!reclaim and use it to determine whether to use current->task_frag.
v2: Eric didn't like gfp flags being tested twice. Introduce a new
helper gfpflags_normal_context() and combine the two tests.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
This reverts commit 92717d429b.
Since commit a8282608c8 ("Revert "mm, thp: restore node-local hugepage
allocations"") is reverted in this series, it is better to restore the
previous 5.2 behavior between the thp allocation and the page allocator
rather than to attempt any consolidation or cleanup for a policy that is
now reverted. It's less risky during an rc cycle and subsequent patches
in this series further modify the same policy that the pre-5.3 behavior
implements.
Consolidation and cleanup can be done subsequent to a sane default page
allocation strategy, so this patch reverts a cleanup done on a strategy
that is now reverted and thus is the least risky option.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Stefan Priebe - Profihost AG <s.priebe@profihost.ag>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "reapply: relax __GFP_THISNODE for MADV_HUGEPAGE mappings".
The fixes for what was originally reported as "pathological THP
behavior" we rightfully reverted to be sure not to introduced
regressions at end of a merge window after a severe regression report
from the kernel bot. We can safely re-apply them now that we had time
to analyze the problem.
The mm process worked fine, because the good fixes were eventually
committed upstream without excessive delay.
The regression reported by the kernel bot however forced us to revert
the good fixes to be sure not to introduce regressions and to give us
the time to analyze the issue further. The silver lining is that this
extra time allowed to think more at this issue and also plan for a
future direction to improve things further in terms of THP NUMA
locality.
This patch (of 2):
This reverts commit 356ff8a9a7 ("Revert "mm, thp: consolidate THP
gfp handling into alloc_hugepage_direct_gfpmask"). So it reapplies
89c83fb539 ("mm, thp: consolidate THP gfp handling into
alloc_hugepage_direct_gfpmask").
Consolidation of the THP allocation flags at the same place was meant to
be a clean up to easier handle otherwise scattered code which is
imposing a maintenance burden. There were no real problems observed
with the gfp mask consolidation but the reversion was rushed through
without a larger consensus regardless.
This patch brings the consolidation back because this should make the
long term maintainability easier as well as it should allow future
changes to be less error prone.
[mhocko@kernel.org: changelog additions]
Link: http://lkml.kernel.org/r/20190503223146.2312-2-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Stefan Priebe - Profihost AG <s.priebe@profihost.ag>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
GFP_KERNEL is one of the most used constant but on archs like arm with
fixed length instruction some constants are more equal than the others.
Constants with tightly packed bits can be injected directly into
instruction stream:
0: e3a00d33 mov r0, #3264 ; 0xcc0
Others require multiple instructions or even loading out of instruction
stream:
0: e3a000c0 mov r0, #192 ; 0xc0
4: e3400060 movt r0, #96 ; 0x60
Shuffle GFP_* flags so that GFP_KERNEL/GFP_ATOMIC + __GFP_ZERO bits are
close to each other.
Savings on arm configs are ~0.1%.
Link: http://lkml.kernel.org/r/20190109201838.GA9140@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit 89c83fb539.
This should have been done as part of 2f0799a0ff ("mm, thp: restore
node-local hugepage allocations"). The movement of the thp allocation
policy from alloc_pages_vma() to alloc_hugepage_direct_gfpmask() was
intended to only set __GFP_THISNODE for mempolicies that are not
MPOL_BIND whereas the revert could set this regardless of mempolicy.
While the check for MPOL_BIND between alloc_hugepage_direct_gfpmask()
and alloc_pages_vma() was racy, that has since been removed since the
revert. What is left is the possibility to use __GFP_THISNODE in
policy_node() when it is unexpected because the special handling for
hugepages in alloc_pages_vma() was removed as part of the consolidation.
Secondly, prior to 89c83fb539, alloc_pages_vma() implemented a somewhat
different policy for hugepage allocations, which were allocated through
alloc_hugepage_vma(). For hugepage allocations, if the allocating
process's node is in the set of allowed nodes, allocate with
__GFP_THISNODE for that node (for MPOL_PREFERRED, use that node with
__GFP_THISNODE instead). This was changed for shmem_alloc_hugepage() to
allow fallback to other nodes in 89c83fb539 as it did for new_page() in
mm/mempolicy.c which is functionally different behavior and removes the
requirement to only allocate hugepages locally.
So this commit does a full revert of 89c83fb539 instead of the partial
revert that was done in 2f0799a0ff. The result is the same thp
allocation policy for 4.20 that was in 4.19.
Fixes: 89c83fb539 ("mm, thp: consolidate THP gfp handling into alloc_hugepage_direct_gfpmask")
Fixes: 2f0799a0ff ("mm, thp: restore node-local hugepage allocations")
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
THP allocation mode is quite complex and it depends on the defrag mode.
This complexity is hidden in alloc_hugepage_direct_gfpmask from a large
part currently. The NUMA special casing (namely __GFP_THISNODE) is
however independent and placed in alloc_pages_vma currently. This both
adds an unnecessary branch to all vma based page allocation requests and
it makes the code more complex unnecessarily as well. Not to mention
that e.g. shmem THP used to do the node reclaiming unconditionally
regardless of the defrag mode until recently. This was not only
unexpected behavior but it was also hardly a good default behavior and I
strongly suspect it was just a side effect of the code sharing more than
a deliberate decision which suggests that such a layering is wrong.
Get rid of the thp special casing from alloc_pages_vma and move the
logic to alloc_hugepage_direct_gfpmask. __GFP_THISNODE is applied to the
resulting gfp mask only when the direct reclaim is not requested and
when there is no explicit numa binding to preserve the current logic.
Please note that there's also a slight difference wrt MPOL_BIND now. The
previous code would avoid using __GFP_THISNODE if the local node was
outside of policy_nodemask(). After this patch __GFP_THISNODE is avoided
for all MPOL_BIND policies. So there's a difference that if local node
is actually allowed by the bind policy's nodemask, previously
__GFP_THISNODE would be added, but now it won't be. From the behavior
POV this is still correct because the policy nodemask is used.
Link: http://lkml.kernel.org/r/20180925120326.24392-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Stefan Priebe - Profihost AG <s.priebe@profihost.ag>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>