Since Android has pcp list for MIGRATE_CMA[1], it could cause
CMA allocation latency due to not freeing the MIGRATE_ISOLATE
page immediately.
Originally, MIGRATE_ISOLATED page is supposed to go buddy list
with skipping pcp list. Otherwise, the page could be reallocated
from pcp list or staying on the pcp list until the pcp is drained
so that CMA keeps retrying since it couldn't find the freed page
from buddy list. That worked before since the CMA pfnblocks changed
only from MIGRATE_CMA to MIGRATE_ISOLATE and free function logic
in page allocator has checked MIGRATE_ISOLATEness on every CMA
pages using below.
free_unref_page_commit
if (migratetype >= MIGRATE_PCPTYPES)
if(is_migrate_isolate(migratetype))
free_one_page(page);
It worked since enum MIGRATE_CMA was bigger than enum
MIGRATE_PCPTYPES but since [1], the enum MIGRATE_CMA is less than
MIGRATE_PCPTYPES so the logic above doesn't work any more.
It could cause following race
CPU 0 CPU 1
free_unref_page
migratetype = get_pfnblock_migratetype()
set_pcppage_migratetype(MIGRATE_CMA)
cma_alloc
alloc_contig_range
set_migrate_isolate(MIGRATE_ISOLATE)
add the page into pcp list
the page could be reallocated
This patch couldn't fix the race completely due to missing zone->lock
in order-0 page free(for performance reason). However, it's not a new
problem so we need to deal with the issue separately.
[1] ANDROID: mm: add cma pcp list
Bug: 218731671
Signed-off-by: Minchan Kim <minchan@google.com>
Change-Id: Ibea20085ce5bfb4b74b83b041f9bda9a380120f9
Signed-off-by: Richard Chang <richardycc@google.com>
(cherry picked from commit d9e4b67784866047e8cfb5598cdf1ebc0c71f3d9)
(Backport: neighboring lines changed +
move variable declaration out of the for loop initializer.)
Implement storing stack depot handles for alloc/free stack traces for slab
objects for the tag-based KASAN modes in a ring buffer.
This ring buffer is referred to as the stack ring.
On each alloc/free of a slab object, the tagged address of the object and
the current stack trace are recorded in the stack ring.
On each bug report, if the accessed address belongs to a slab object, the
stack ring is scanned for matching entries. The newest entries are used
to print the alloc/free stack traces in the report: one entry for alloc
and one for free.
The number of entries in the stack ring is fixed in this patch, but one of
the following patches adds a command-line argument to control it.
[andreyknvl@google.com: initialize read-write lock in stack ring]
Link: https://lkml.kernel.org/r/576182d194e27531e8090bad809e4136953895f4.1663700262.git.andreyknvl@google.com
Link: https://lkml.kernel.org/r/692de14b6b6a1bc817fd55e4ad92fc1f83c1ab59.1662411799.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Peter Collingbourne <pcc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Bug: 254721825
(cherry picked from commit 7bc0584e5d2a687c0855a1b3dec9a6d6857d757b)
Change-Id: If7c3b88fafbedf30e012c20903a878f125f11355
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Add bug_type and alloc/free_track fields to kasan_report_info and add a
kasan_complete_mode_report_info() function that fills in these fields.
This function is implemented differently for different KASAN mode.
Change the reporting code to use the filled in fields instead of invoking
kasan_get_bug_type() and kasan_get_alloc/free_track().
For the Generic mode, kasan_complete_mode_report_info() invokes these
functions instead. For the tag-based modes, only the bug_type field is
filled in; alloc/free_track are handled in the next patch.
Using a single function that fills in these fields is required for the
tag-based modes, as the values for all three fields are determined in a
single procedure implemented in the following patch.
Link: https://lkml.kernel.org/r/8432b861054fa8d0cee79a8877dedeaf3b677ca8.1662411799.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Peter Collingbourne <pcc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Bug: 254721825
(cherry picked from commit 59e6e098d1c156f7c449af903c3b48a5470f6120)
Change-Id: Id341d252eda1b76b2a6e5fef42c37a745089f647
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
(Backport: conflicts due to folio patchset not backported.)
Add cache and object fields to kasan_report_info and fill them in in
complete_report_info() instead of fetching them in the middle of the
report printing code.
This allows the reporting code to get access to the object information
before starting printing the report. One of the following patches uses
this information to determine the bug type with the tag-based modes.
Link: https://lkml.kernel.org/r/23264572cb2cbb8f0efbb51509b6757eb3cc1fc9.1662411799.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Peter Collingbourne <pcc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Bug: 254721825
(cherry picked from commit 7fae3dd08e3e88491f06e22e648913e3f8cf30f0)
Change-Id: Id8d7d85876bf15b7e6a42d3893a1156cc06d0271
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Right now, kasan_cache_create() assigns SLAB_KASAN for all KASAN modes and
then sets up metadata-related cache parameters for the Generic mode.
SLAB_KASAN is used in two places:
1. In slab_ksize() to account for per-object metadata when
calculating the size of the accessible memory within the object.
2. In slab_common.c via kasan_never_merge() to prevent merging of
caches with per-object metadata.
Both cases are only relevant when per-object metadata is present, which is
only the case with the Generic mode.
Thus, assign SLAB_KASAN and define kasan_cache_create() only for the
Generic mode.
Also update the SLAB_KASAN-related comment.
Link: https://lkml.kernel.org/r/61faa2aa1906e2d02c97d00ddf99ce8911dda095.1662411799.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Peter Collingbourne <pcc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Bug: 254721825
(cherry picked from commit 682ed08924407b719fa0b1123a26971748d76ace)
Change-Id: I497d1e232a2b0a1bfb4e67e22466f7fde97c680c
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Add a kasan_requires_meta() helper that indicates whether the enabled
KASAN mode requires per-object metadata and use this helper in the common
code.
Also hide kasan_init_object_meta() under CONFIG_KASAN_GENERIC ifdef check,
as Generic is the only mode that uses per-object metadata.
To allow for a potential future change that makes Generic KASAN support
the kasan.stacktrace command-line parameter, let kasan_requires_meta()
return kasan_stack_collection_enabled() instead of simply returning true.
Link: https://lkml.kernel.org/r/cf837e9996246aaaeebf704ccf8ec26a34fcf64f.1662411799.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Peter Collingbourne <pcc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Bug: 254721825
(cherry picked from commit 284f8590a1dfbe1c33b50bf6e8f8dc714e61bfd3)
Change-Id: I381ef2d4e16d179ce5710c8dc60c125789378985
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Add a kasan_get_alloc_track() helper that fetches alloc_track for a slab
object and use this helper in the common reporting code.
For now, the implementations of this helper are the same for the Generic
and tag-based modes, but they will diverge later in the series.
This change hides references to alloc_meta from the common reporting code.
This is desired as only the Generic mode will be using per-object
metadata after this series.
Link: https://lkml.kernel.org/r/0c365a35f4a833fff46f9d42c3212b32f7166556.1662411799.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Peter Collingbourne <pcc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Bug: 254721825
(cherry picked from commit f3647cbfe5a34af1a22f2627dda5fb078a47f0d3)
Change-Id: I01e606e1a8da2c1ab03c6d6153523e61fa449ee9
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Patch series "kasan: switch tag-based modes to stack ring from per-object
metadata", v3.
This series makes the tag-based KASAN modes use a ring buffer for storing
stack depot handles for alloc/free stack traces for slab objects instead
of per-object metadata. This ring buffer is referred to as the stack
ring.
On each alloc/free of a slab object, the tagged address of the object and
the current stack trace are recorded in the stack ring.
On each bug report, if the accessed address belongs to a slab object, the
stack ring is scanned for matching entries. The newest entries are used
to print the alloc/free stack traces in the report: one entry for alloc
and one for free.
The advantages of this approach over storing stack trace handles in
per-object metadata with the tag-based KASAN modes:
- Allows to find relevant stack traces for use-after-free bugs without
using quarantine for freed memory. (Currently, if the object was
reallocated multiple times, the report contains the latest alloc/free
stack traces, not necessarily the ones relevant to the buggy allocation.)
- Allows to better identify and mark use-after-free bugs, effectively
making the CONFIG_KASAN_TAGS_IDENTIFY functionality always-on.
- Has fixed memory overhead.
The disadvantage:
- If the affected object was allocated/freed long before the bug happened
and the stack trace events were purged from the stack ring, the report
will have no stack traces.
Discussion
==========
The proposed implementation of the stack ring uses a single ring buffer
for the whole kernel. This might lead to contention due to atomic
accesses to the ring buffer index on multicore systems.
At this point, it is unknown whether the performance impact from this
contention would be significant compared to the slowdown introduced by
collecting stack traces due to the planned changes to the latter part, see
the section below.
For now, the proposed implementation is deemed to be good enough, but this
might need to be revisited once the stack collection becomes faster.
A considered alternative is to keep a separate ring buffer for each CPU
and then iterate over all of them when printing a bug report. This
approach requires somehow figuring out which of the stack rings has the
freshest stack traces for an object if multiple stack rings have them.
Further plans
=============
This series is a part of an effort to make KASAN stack trace collection
suitable for production. This requires stack trace collection to be fast
and memory-bounded.
The planned steps are:
1. Speed up stack trace collection (potentially, by using SCS;
patches on-hold until steps #2 and #3 are completed).
2. Keep stack trace handles in the stack ring (this series).
3. Add a memory-bounded mode to stack depot or provide an alternative
memory-bounded stack storage.
4. Potentially, implement stack trace collection sampling to minimize
the performance impact.
This patch (of 34):
__kasan_metadata_size() calculates the size of the redzone for objects in
a slab cache.
When accounting for presence of kasan_free_meta in the redzone, this
function only compares free_meta_offset with 0. But free_meta_offset
could also be equal to KASAN_NO_FREE_META, which indicates that
kasan_free_meta is not present at all.
Add a comparison with KASAN_NO_FREE_META into __kasan_metadata_size().
Link: https://lkml.kernel.org/r/cover.1662411799.git.andreyknvl@google.com
Link: https://lkml.kernel.org/r/c7b316d30d90e5947eb8280f4dc78856a49298cf.1662411799.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Peter Collingbourne <pcc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Bug: 254721825
(cherry picked from commit ca77f290cff1dfa095d71ae16cc7cda8ee6df495)
Change-Id: I1feae36ac8435c0ffab4e72bcb03f03b689a0677
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
(Backport: fix conflicts with 608d4c5f9f in arch/x86/um/Makefile.)
Make KASAN run on User Mode Linux on x86_64.
The UML-specific KASAN initializer uses mmap to map the ~16TB of shadow
memory to the location defined by KASAN_SHADOW_OFFSET. kasan_init()
utilizes constructors to initialize KASAN before main().
The location of the KASAN shadow memory, starting at
KASAN_SHADOW_OFFSET, can be configured using the KASAN_SHADOW_OFFSET
option. The default location of this offset is 0x100000000000, which
keeps it out-of-the-way even on UML setups with more "physical" memory.
For low-memory setups, 0x7fff8000 can be used instead, which fits in an
immediate and is therefore faster, as suggested by Dmitry Vyukov. There
is usually enough free space at this location; however, it is a config
option so that it can be easily changed if needed.
Note that, unlike KASAN on other architectures, vmalloc allocations
still use the shadow memory allocated upfront, rather than allocating
and free-ing it per-vmalloc allocation.
If another architecture chooses to go down the same path, we should
replace the checks for CONFIG_UML with something more generic, such
as:
- A CONFIG_KASAN_NO_SHADOW_ALLOC option, which architectures could set
- or, a way of having architecture-specific versions of these vmalloc
and module shadow memory allocation options.
Also note that, while UML supports both KASAN in inline mode
(CONFIG_KASAN_INLINE) and static linking (CONFIG_STATIC_LINK), it does
not support both at the same time.
Signed-off-by: Patricia Alfonso <trishalfonso@google.com>
Co-developed-by: Vincent Whitchurch <vincent.whitchurch@axis.com>
Signed-off-by: Vincent Whitchurch <vincent.whitchurch@axis.com>
Signed-off-by: David Gow <davidgow@google.com>
Reviewed-by: Johannes Berg <johannes@sipsolutions.net>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
Bug: 254721825
(cherry picked from commit 5b301409e8bc5d7fad2ee138be44c5c529dd0874)
Change-Id: I7b6a5dfef80dd8e4684db738c35d80e6405b2f8b
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Commit c275c5c6d5 ("kasan: disable freed user page poisoning with HW
tags") added __GFP_SKIP_KASAN_POISON to GFP_HIGHUSER_MOVABLE. A similar
argument can be made about unpoisoning, so also add
__GFP_SKIP_KASAN_UNPOISON to user pages. To ensure the user page is
still accessible via page_address() without a kasan fault, reset the
page->flags tag.
With the above changes, there is no need for the arm64
tag_clear_highpage() to reset the page->flags tag.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Link: https://lore.kernel.org/r/20220610152141.2148929-3-catalin.marinas@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Bug: 254721825
(cherry picked from commit 70c248aca9e7efa85a6664d5ab56c17c326c958f)
Change-Id: Ie5c13ce38e5c030cb77d63326c9cfd72bd668239
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
__kasan_unpoison_pages() colours the memory with a random tag and stores
it in page->flags in order to re-create the tagged pointer via
page_to_virt() later. When the tag from the page->flags is read, ensure
that the in-memory tags are already visible by re-ordering the
page_kasan_tag_set() after kasan_unpoison(). The former already has
barriers in place through try_cmpxchg(). On the reader side, the order
is ensured by the address dependency between page->flags and the memory
access.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Link: https://lore.kernel.org/r/20220610152141.2148929-2-catalin.marinas@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Bug: 254721825
(cherry picked from commit ed0a6d1d973e9763989b44913ae1bd2a5d5d5777)
Change-Id: I21744380b630fa5c8c6174ca0d4f063ff75b6acd
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
HW_TAGS KASAN skips zeroing page_alloc allocations backing vmalloc
mappings via __GFP_SKIP_ZERO. Instead, these pages are zeroed via
kasan_unpoison_vmalloc() by passing the KASAN_VMALLOC_INIT flag.
The problem is that __kasan_unpoison_vmalloc() does not zero pages when
either kasan_vmalloc_enabled() or is_vmalloc_or_module_addr() fail.
Thus:
1. Change __vmalloc_node_range() to only set KASAN_VMALLOC_INIT when
__GFP_SKIP_ZERO is set.
2. Change __kasan_unpoison_vmalloc() to always zero pages when the
KASAN_VMALLOC_INIT flag is set.
3. Add WARN_ON() asserts to check that KASAN_VMALLOC_INIT cannot be set
in other early return paths of __kasan_unpoison_vmalloc().
Also clean up the comment in __kasan_unpoison_vmalloc.
Link: https://lkml.kernel.org/r/4bc503537efdc539ffc3f461c1b70162eea31cf6.1654798516.git.andreyknvl@google.com
Fixes: 23689e91fb22 ("kasan, vmalloc: add vmalloc tagging for HW_TAGS")
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Bug: 254721825
(cherry picked from commit 6c2f761dad7851d8088b91063ccaea3c970efe78)
Change-Id: I07d3f8dc3cd28f43852a04b741a1c0b5a65a4ff9
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:46
in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 1, name: swapper/0
preempt_count: 1, expected: 0
...........
CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.17.1-rt16-yocto-preempt-rt #22
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009),
BIOS rel-1.15.0-0-g2dd4b9b3f840-prebuilt.qemu.org 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x60/0x8c
dump_stack+0x10/0x12
__might_resched.cold+0x13b/0x173
rt_spin_lock+0x5b/0xf0
___cache_free+0xa5/0x180
qlist_free_all+0x7a/0x160
per_cpu_remove_cache+0x5f/0x70
smp_call_function_many_cond+0x4c4/0x4f0
on_each_cpu_cond_mask+0x49/0xc0
kasan_quarantine_remove_cache+0x54/0xf0
kasan_cache_shrink+0x9/0x10
kmem_cache_shrink+0x13/0x20
acpi_os_purge_cache+0xe/0x20
acpi_purge_cached_objects+0x21/0x6d
acpi_initialize_objects+0x15/0x3b
acpi_init+0x130/0x5ba
do_one_initcall+0xe5/0x5b0
kernel_init_freeable+0x34f/0x3ad
kernel_init+0x1e/0x140
ret_from_fork+0x22/0x30
When the kmem_cache_shrink() was called, the IPI was triggered, the
___cache_free() is called in IPI interrupt context, the local-lock or
spin-lock will be acquired. On PREEMPT_RT kernel, these locks are
replaced with sleepbale rt-spinlock, so the above problem is triggered.
Fix it by moving the qlist_free_allfrom() from IPI interrupt context to
task context when PREEMPT_RT is enabled.
[akpm@linux-foundation.org: reduce ifdeffery]
Link: https://lkml.kernel.org/r/20220401134649.2222485-1-qiang1.zhang@intel.com
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Acked-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Bug: 254721825
(cherry picked from commit 07d067e4f2ceb72b9f681995cc53828caaba9e6e)
Change-Id: I0a0555265d2e05f31cf2cd58b318d3602ba3cc6a
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
(Backport: no conflict, neighboring lines changes.)
On hardware with features like arm64 MTE or SPARC ADI, an access fault
can be triggered at sub-page granularity. Depending on how the
fault_in_writeable() function is used, the caller can get into a
live-lock by continuously retrying the fault-in on an address different
from the one where the uaccess failed.
In the majority of cases progress is ensured by the following
conditions:
1. copy_to_user_nofault() guarantees at least one byte access if the
user address is not faulting.
2. The fault_in_writeable() loop is resumed from the first address that
could not be accessed by copy_to_user_nofault().
If the loop iteration is restarted from an earlier (initial) point, the
loop is repeated with the same conditions and it would live-lock.
Introduce an arch-specific probe_subpage_writeable() and call it from
the newly added fault_in_subpage_writeable() function. The arch code
with sub-page faults will have to implement the specific probing
functionality.
Note that no other fault_in_subpage_*() functions are added since they
have no callers currently susceptible to a live-lock.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: https://lore.kernel.org/r/20220423100751.1870771-2-catalin.marinas@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Bug: 254721825
(cherry picked from commit da32b5817253697671af961715517bfbb308a592)
Change-Id: I8362937496a2a8709686af9f97009b00a21b1f5d
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>