This change introduces a prctl that allows the user program to control
which PAC keys are enabled in a particular task. The main reason
why this is useful is to enable a userspace ABI that uses PAC to
sign and authenticate function pointers and other pointers exposed
outside of the function, while still allowing binaries conforming
to the ABI to interoperate with legacy binaries that do not sign or
authenticate pointers.
The idea is that a dynamic loader or early startup code would issue
this prctl very early after establishing that a process may load legacy
binaries, but before executing any PAC instructions.
This change adds a small amount of overhead to kernel entry and exit
due to additional required instruction sequences.
On a DragonBoard 845c (Cortex-A75) with the powersave governor, the
overhead of similar instruction sequences was measured as 4.9ns when
simulating the common case where IA is left enabled, or 43.7ns when
simulating the uncommon case where IA is disabled. These numbers can
be seen as the worst case scenario, since in more realistic scenarios
a better performing governor would be used and a newer chip would be
used that would support PAC unlike Cortex-A75 and would be expected
to be faster than Cortex-A75.
On an Apple M1 under a hypervisor, the overhead of the entry/exit
instruction sequences introduced by this patch was measured as 0.3ns
in the case where IA is left enabled, and 33.0ns in the case where
IA is disabled.
Signed-off-by: Peter Collingbourne <pcc@google.com>
Reviewed-by: Dave Martin <Dave.Martin@arm.com>
Link: https://linux-review.googlesource.com/id/Ibc41a5e6a76b275efbaa126b31119dc197b927a5
Link: https://lore.kernel.org/r/d6609065f8f40397a4124654eb68c9f490b4d477.1616123271.git.pcc@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
MTE provides a mode that asynchronously updates the TFSR_EL1 register
when a tag check exception is detected.
To take advantage of this mode the kernel has to verify the status of
the register at:
1. Context switching
2. Return to user/EL0 (Not required in entry from EL0 since the kernel
did not run)
3. Kernel entry from EL1
4. Kernel exit to EL1
If the register is non-zero a trace is reported.
Add the required features for EL1 detection and reporting.
Note: ITFSB bit is set in the SCTLR_EL1 register hence it guaranties that
the indirect writes to TFSR_EL1 are synchronized at exception entry to
EL1. On the context switch path the synchronization is guarantied by the
dsb() in __switch_to().
The dsb(nsh) in mte_check_tfsr_exit() is provisional pending
confirmation by the architects.
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Andrey Konovalov <andreyknvl@google.com>
Tested-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Link: https://lore.kernel.org/r/20210315132019.33202-8-vincenzo.frascino@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
load_unaligned_zeropad() and __get/put_kernel_nofault() functions can
read past some buffer limits which may include some MTE granule with a
different tag.
When MTE async mode is enabled, the load operation crosses the boundaries
and the next granule has a different tag the PE sets the TFSR_EL1.TF1 bit
as if an asynchronous tag fault is happened.
Enable Tag Check Override (TCO) in these functions before the load and
disable it afterwards to prevent this to happen.
Note: The same condition can be hit in MTE sync mode but we deal with it
through the exception handling.
In the current implementation, mte_async_mode flag is set only at boot
time but in future kasan might acquire some runtime features that
that change the mode dynamically, hence we disable it when sync mode is
selected for future proof.
Cc: Will Deacon <will@kernel.org>
Reported-by: Branislav Rankov <Branislav.Rankov@arm.com>
Tested-by: Branislav Rankov <Branislav.Rankov@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Andrey Konovalov <andreyknvl@google.com>
Tested-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Link: https://lore.kernel.org/r/20210315132019.33202-6-vincenzo.frascino@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
MTE provides an asynchronous mode for detecting tag exceptions. In
particular instead of triggering a fault the arm64 core updates a
register which is checked by the kernel after the asynchronous tag
check fault has occurred.
Add support for MTE asynchronous mode.
The exception handling mechanism will be added with a future patch.
Note: KASAN HW activates async mode via kasan.mode kernel parameter.
The default mode is set to synchronous.
The code that verifies the status of TFSR_EL1 will be added with a
future patch.
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: Andrey Konovalov <andreyknvl@google.com>
Tested-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Link: https://lore.kernel.org/r/20210315132019.33202-2-vincenzo.frascino@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The ptrace(PTRACE_PEEKMTETAGS) implementation checks whether the user
page has valid tags (mapped with PROT_MTE) by testing the PG_mte_tagged
page flag. If this bit is cleared, ptrace(PTRACE_PEEKMTETAGS) returns
-EIO.
A newly created (PROT_MTE) mapping points to the zero page which had its
tags zeroed during cpu_enable_mte(). If there were no prior writes to
this mapping, ptrace(PTRACE_PEEKMTETAGS) fails with -EIO since the zero
page does not have the PG_mte_tagged flag set.
Set PG_mte_tagged on the zero page when its tags are cleared during
boot. In addition, to avoid ptrace(PTRACE_PEEKMTETAGS) succeeding on
!PROT_MTE mappings pointing to the zero page, change the
__access_remote_tags() check to (vm_flags & VM_MTE) instead of
PG_mte_tagged.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Fixes: 34bfeea4a9 ("arm64: mte: Clear the tags when a page is mapped in user-space with PROT_MTE")
Cc: <stable@vger.kernel.org> # 5.10.x
Cc: Will Deacon <will@kernel.org>
Reported-by: Luis Machado <luis.machado@linaro.org>
Tested-by: Luis Machado <luis.machado@linaro.org>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Link: https://lore.kernel.org/r/20210210180316.23654-1-catalin.marinas@arm.com
When swapping pages out to disk it is necessary to save any tags that
have been set, and restore when swapping back in. Make use of the new
page flag (PG_ARCH_2, locally named PG_mte_tagged) to identify pages
with tags. When swapping out these pages the tags are stored in memory
and later restored when the pages are brought back in. Because shmem can
swap pages back in without restoring the userspace PTE it is also
necessary to add a hook for shmem.
Signed-off-by: Steven Price <steven.price@arm.com>
[catalin.marinas@arm.com: move function prototypes to mte.h]
[catalin.marinas@arm.com: drop '_tags' from arch_swap_restore_tags()]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Will Deacon <will@kernel.org>
Add support for bulk setting/getting of the MTE tags in a tracee's
address space at 'addr' in the ptrace() syscall prototype. 'data' points
to a struct iovec in the tracer's address space with iov_base
representing the address of a tracer's buffer of length iov_len. The
tags to be copied to/from the tracer's buffer are stored as one tag per
byte.
On successfully copying at least one tag, ptrace() returns 0 and updates
the tracer's iov_len with the number of tags copied. In case of error,
either -EIO or -EFAULT is returned, trying to follow the ptrace() man
page.
Note that the tag copying functions are not performance critical,
therefore they lack optimisations found in typical memory copy routines.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Alan Hayward <Alan.Hayward@arm.com>
Cc: Luis Machado <luis.machado@linaro.org>
Cc: Omair Javaid <omair.javaid@linaro.org>
In preparation for ptrace() access to the prctl() value, allow calling
these functions on non-current tasks.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
The CPU resume/suspend routines only take care of the common system
registers. Restore GCR_EL1 in addition via the __cpu_suspend_exit()
function.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
The IRG, ADDG and SUBG instructions insert a random tag in the resulting
address. Certain tags can be excluded via the GCR_EL1.Exclude bitmap
when, for example, the user wants a certain colour for freed buffers.
Since the GCR_EL1 register is not accessible at EL0, extend the
prctl(PR_SET_TAGGED_ADDR_CTRL) interface to include a 16-bit field in
the first argument for controlling which tags can be generated by the
above instruction (an include rather than exclude mask). Note that by
default all non-zero tags are excluded. This setting is per-thread.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
By default, even if PROT_MTE is set on a memory range, there is no tag
check fault reporting (SIGSEGV). Introduce a set of option to the
exiting prctl(PR_SET_TAGGED_ADDR_CTRL) to allow user control of the tag
check fault mode:
PR_MTE_TCF_NONE - no reporting (default)
PR_MTE_TCF_SYNC - synchronous tag check fault reporting
PR_MTE_TCF_ASYNC - asynchronous tag check fault reporting
These options translate into the corresponding SCTLR_EL1.TCF0 bitfield,
context-switched by the kernel. Note that the kernel accesses to the
user address space (e.g. read() system call) are not checked if the user
thread tag checking mode is PR_MTE_TCF_NONE or PR_MTE_TCF_ASYNC. If the
tag checking mode is PR_MTE_TCF_SYNC, the kernel makes a best effort to
check its user address accesses, however it cannot always guarantee it.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
When the Memory Tagging Extension is enabled, two pages are identical
only if both their data and tags are identical.
Make the generic memcmp_pages() a __weak function and add an
arm64-specific implementation which returns non-zero if any of the two
pages contain valid MTE tags (PG_mte_tagged set). There isn't much
benefit in comparing the tags of two pages since these are normally used
for heap allocations and likely to differ anyway.
Co-developed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Pages allocated by the kernel are not guaranteed to have the tags
zeroed, especially as the kernel does not (yet) use MTE itself. To
ensure the user can still access such pages when mapped into its address
space, clear the tags via set_pte_at(). A new page flag - PG_mte_tagged
(PG_arch_2) - is used to track pages with valid allocation tags.
Since the zero page is mapped as pte_special(), it won't be covered by
the above set_pte_at() mechanism. Clear its tags during early MTE
initialisation.
Co-developed-by: Steven Price <steven.price@arm.com>
Signed-off-by: Steven Price <steven.price@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
The Memory Tagging Extension has two modes of notifying a tag check
fault at EL0, configurable through the SCTLR_EL1.TCF0 field:
1. Synchronous raising of a Data Abort exception with DFSC 17.
2. Asynchronous setting of a cumulative bit in TFSRE0_EL1.
Add the exception handler for the synchronous exception and handling of
the asynchronous TFSRE0_EL1.TF0 bit setting via a new TIF flag in
do_notify_resume().
On a tag check failure in user-space, whether synchronous or
asynchronous, a SIGSEGV will be raised on the faulting thread.
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Co-developed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>