The GEM object is grossly overweight for the practicality of tracking
large numbers of individual pages, yet it is currently our only
abstraction for tracking DMA allocations. Since those allocations need
to be reserved upfront before an operation, and that we need to break
away from simple system memory, we need to ditch using plain struct page
wrappers.
In the process, we drop the WC mapping as we ended up clflushing
everything anyway due to various issues across a wider range of
platforms. Though in a future step, we need to drop the kmap_atomic
approach which suggests we need to pre-map all the pages and keep them
mapped.
v2: Verify our large scratch page is suitably DMA aligned; and manually
clear the scratch since we are allocating plain struct pages full of
prior content.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Matthew Auld <matthew.auld@intel.com>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200729164219.5737-2-chris@chris-wilson.co.uk
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
Signed-off-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
We need to make the DMA allocations used for page directories to be
performed up front so that we can include those allocations in our
memory reservation pass. The downside is that we have to assume the
worst case, even before we know the final layout, and always allocate
enough page directories for this object, even when there will be overlap.
This unfortunately can be quite expensive, especially as we have to
clear/reset the page directories and DMA pages, but it should only be
required during early phases of a workload when new objects are being
discovered, or after memory/eviction pressure when we need to rebind.
Once we reach steady state, the objects should not be moved and we no
longer need to preallocating the pages tables.
It should be noted that the lifetime for the page directories DMA is
more or less decoupled from individual fences as they will be shared
across objects across timelines.
v2: Only allocate enough PD space for the PTE we may use, we do not need
to allocate PD that will be left as scratch.
v3: Store the shift unto the first PD level to encapsulate the different
PTE counts for gen6/gen8.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Matthew Auld <matthew.auld@intel.com>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200729164219.5737-1-chris@chris-wilson.co.uk
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
Signed-off-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
If we find ourselves trying to reuse a misplaced but active vma, we
currently try to discard it to avoid having to wait to unbind it
(upsetting the current user fo the vma). An alternative to marking it as
a dicarded vma and keeping it in both the obj->vma.list and
obj->vma.tree, is to simply remove it from the lookup rbtree.
While it remains in the list of vma, it will be unbound under eviction
pressure and freed along with the object. We will never reuse it again
for new instances. As before, with no pruning, the list may continually
grow, but eventually we will have the most constrained version of the
ggtt view that meets all requirements -- so the list of vma should not
grow without bound.
Closes: https://gitlab.freedesktop.org/drm/intel/-/issues/2012
Fixes: 9bdcaa5e3a ("drm/i915: Discard a misplaced GGTT vma")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Matthew Auld <matthew.auld@intel.com>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200611180421.23262-1-chris@chris-wilson.co.uk
The history of i915_vma_close() is confusing, as is its use. As the
lifetime of the i915_vma is currently bounded by the object it is
attached to, we needed a means of identify when a vma was no longer in
use by userspace (via the user's fd). This is further complicated by
that only ppgtt vma should be closed at the user's behest, as the ggtt
were always shared.
Now that we attach the vma to a lut on the user's context, the open
count does indicate how many unique and open context/vm are referencing
this vma from the user. As such, we can and should just use the
open_count to track when the vma is still in use by userspace.
It's a poor man's replacement for reference counting.
Closes: https://gitlab.freedesktop.org/drm/intel/issues/1193
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Andi Shyti <andi.shyti@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200422190558.30509-1-chris@chris-wilson.co.uk
While the ggtt vma are protected by their object lifetime, the list
continues until it hits a non-ggtt vma, and that vma is not protected
and may be freed as we inspect it. Hence, we require the obj->vma.lock
to protect the list as we iterate.
An example of forgetting to hold the obj->vma.lock is
[1642834.464973] general protection fault, probably for non-canonical address 0xdead000000000122: 0000 [#1] SMP PTI
[1642834.464977] CPU: 3 PID: 1954 Comm: Xorg Not tainted 5.6.0-300.fc32.x86_64 #1
[1642834.464979] Hardware name: LENOVO 20ARS25701/20ARS25701, BIOS GJET94WW (2.44 ) 09/14/2017
[1642834.465021] RIP: 0010:i915_gem_object_set_tiling+0x2c0/0x3e0 [i915]
[1642834.465024] Code: 8b 84 24 18 01 00 00 f6 c4 80 74 59 49 8b 94 24 a0 00 00 00 49 8b 84 24 e0 00 00 00 49 8b 74 24 10 48 8b 92 30 01 00 00 89 c7 <80> ba 0a 06 00 00 03 0f 87 86 00 00 00 ba 00 00 08 00 b9 00 00 10
[1642834.465025] RSP: 0018:ffffa98780c77d60 EFLAGS: 00010282
[1642834.465028] RAX: ffff8d232bfb2578 RBX: 0000000000000002 RCX: ffff8d25873a0000
[1642834.465029] RDX: dead000000000122 RSI: fffff0af8ac6e408 RDI: 000000002bfb2578
[1642834.465030] RBP: ffff8d25873a0000 R08: ffff8d252bfb5638 R09: 0000000000000000
[1642834.465031] R10: 0000000000000000 R11: ffff8d252bfb5640 R12: ffffa987801cb8f8
[1642834.465032] R13: 0000000000001000 R14: ffff8d233e972e50 R15: ffff8d233e972d00
[1642834.465034] FS: 00007f6a3d327f00(0000) GS:ffff8d25926c0000(0000) knlGS:0000000000000000
[1642834.465036] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[1642834.465037] CR2: 00007f6a2064d000 CR3: 00000002fb57c001 CR4: 00000000001606e0
[1642834.465038] Call Trace:
[1642834.465083] i915_gem_set_tiling_ioctl+0x122/0x230 [i915]
[1642834.465121] ? i915_gem_object_set_tiling+0x3e0/0x3e0 [i915]
[1642834.465151] drm_ioctl_kernel+0x86/0xd0 [drm]
[1642834.465156] ? avc_has_perm+0x3b/0x160
[1642834.465178] drm_ioctl+0x206/0x390 [drm]
[1642834.465216] ? i915_gem_object_set_tiling+0x3e0/0x3e0 [i915]
[1642834.465221] ? selinux_file_ioctl+0x122/0x1c0
[1642834.465226] ? __do_munmap+0x24b/0x4d0
[1642834.465231] ksys_ioctl+0x82/0xc0
[1642834.465235] __x64_sys_ioctl+0x16/0x20
[1642834.465238] do_syscall_64+0x5b/0xf0
[1642834.465243] entry_SYSCALL_64_after_hwframe+0x44/0xa9
[1642834.465245] RIP: 0033:0x7f6a3d7b047b
[1642834.465247] Code: 0f 1e fa 48 8b 05 1d aa 0c 00 64 c7 00 26 00 00 00 48 c7 c0 ff ff ff ff c3 66 0f 1f 44 00 00 f3 0f 1e fa b8 10 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d ed a9 0c 00 f7 d8 64 89 01 48
[1642834.465249] RSP: 002b:00007ffe71adba28 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
[1642834.465251] RAX: ffffffffffffffda RBX: 000055f99048fa40 RCX: 00007f6a3d7b047b
[1642834.465253] RDX: 00007ffe71adba30 RSI: 00000000c0106461 RDI: 000000000000000e
[1642834.465254] RBP: 0000000000000002 R08: 000055f98f3f1798 R09: 0000000000000002
[1642834.465255] R10: 0000000000001000 R11: 0000000000000246 R12: 0000000000000080
[1642834.465257] R13: 000055f98f3f1690 R14: 00000000c0106461 R15: 00007ffe71adba30
Now to take the spinlock during the list iteration, we need to break it
down into two phases. In the first phase under the lock, we cannot sleep
and so must defer the actual work to a second list, protected by the
ggtt->mutex.
We also need to hold the spinlock during creation of a new vma to
serialise with updates of the tiling on the object.
Reported-by: Dave Airlie <airlied@redhat.com>
Fixes: 2850748ef8 ("drm/i915: Pull i915_vma_pin under the vm->mutex")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Dave Airlie <airlied@redhat.com>
Cc: <stable@vger.kernel.org> # v5.5+
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200422072805.17340-1-chris@chris-wilson.co.uk
We cached the number of vma bound to the object in order to speed up
shrinker decisions. This has been superseded by being more proactive in
removing objects we cannot shrink from the shrinker lists, and so we can
drop the clumsy attempt at atomically counting the bind count and
comparing it to the number of pinned mappings of the object. This will
only get more clumsier with asynchronous binding and unbinding.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200401223924.16667-1-chris@chris-wilson.co.uk
Userptr causes lockdep to complain when we are using the aliasing-ppgtt
(and ggtt, but for that it is rightfully so to complain about) in that
when we revoke the userptr we take a mutex which we also use to revoke
the mmaps. However, we only revoke mmaps for GGTT bindings and we never
allow userptr to create a GGTT binding so the warning should be false
and is simply caused by our conflation of the aliasing-ppgtt with the
ggtt. So lets try treating the binding into the aliasing-ppgtt as a
separate lockclass from the ggtt. The downside is that we are
deliberately suppressing lockdep;s ability to warn us of cycles.
Closes: https://gitlab.freedesktop.org/drm/intel/issues/478
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Andi Shyti <andi.shyti@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200326142727.31962-1-chris@chris-wilson.co.uk
If the caller allows and we do not have to wait for any signals,
immediately execute the work within the caller's process. By doing so we
avoid the overhead of scheduling a new task, and the latency in
executing it, at the cost of pulling that work back into the immediate
context. (Sometimes we still prefer to offload the task to another cpu,
especially if we plan on executing many such tasks in parallel for this
client.)
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200325120227.8044-2-chris@chris-wilson.co.uk
On Braswell and Broxton (also known as Valleyview and Apollolake), we
need to serialise updates of the GGTT using the big stop_machine()
hammer. This has the side effect of appearing to lockdep as a possible
reclaim (since it uses the cpuhp mutex and that is tainted by per-cpu
allocations). However, we want to use vm->mutex (including ggtt->mutex)
from within the shrinker and so must avoid such possible taints. For this
purpose, we introduced the asynchronous vma binding and we can apply it
to the PIN_GLOBAL so long as take care to add the necessary waits for
the worker afterwards.
Closes: https://gitlab.freedesktop.org/drm/intel/issues/211
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200130181710.2030251-3-chris@chris-wilson.co.uk
Allocate only an internal intel_context for the kernel_context, forgoing
a global GEM context for internal use as we only require a separate
address space (for our own protection).
Now having weaned GT from requiring ce->gem_context, we can stop
referencing it entirely. This also means we no longer have to create random
and unnecessary GEM contexts for internal use.
GEM contexts are now entirely for tracking GEM clients, and intel_context
the execution environment on the GPU.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Andi Shyti <andi.shyti@intel.com>
Acked-by: Andi Shyti <andi.shyti@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191221160324.1073045-1-chris@chris-wilson.co.uk
This is really just an alias of mmap_gtt. The 'mmap offset' nomenclature
comes from the value returned by this ioctl which is the offset into the
device fd which userpace uses with mmap(2).
mmap_gtt was our initial mmap_offset implementation, this extends
our CPU mmap support to allow additional fault handlers that depends on
the object's backing pages.
Note that we multiplex mmap_gtt and mmap_offset through the same ioctl,
and use the zero extending behaviour of drm to differentiate between
them, when we inspect the flags.
To support multiple mmap types on an object we need to support multiple
mmap_offsets for an object (each offset in the global device address
space corresponding to a unique instance of the object for a file + mmap
type). As we drop the simplified drm core idea of a single mmap_offset,
we need to provide replacement hooks for the dumb mmap interface as
well.
Link: https://gitlab.freedesktop.org/mesa/mesa/merge_requests/1675
Testcase: igt/gem_mmap_offset
Signed-off-by: Abdiel Janulgue <abdiel.janulgue@linux.intel.com>
Signed-off-by: Matthew Auld <matthew.auld@intel.com>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20191204120032.3682839-1-chris@chris-wilson.co.uk