bb12d18e602651ec81ed8b17fe516ffaa9dc584a
560 Commits
| Author | SHA1 | Message | Date | |
|---|---|---|---|---|
|
|
f2e0e1615d |
btrfs: do not abort transaction on failure to write log tree when syncing log
commit 16199ad9eb6db60a6b10794a09fc1ac6d09312ff upstream. When syncing the log, if we fail to write log tree extent buffers, we mark the log for a full commit and abort the transaction. However we don't need to abort the transaction, all we really need to do is to make sure no one can commit a superblock pointing to new log tree roots. Just because we got a failure writing extent buffers for a log tree, it does not mean we will also fail to do a transaction commit. One particular case is if due to a bug somewhere, when writing log tree extent buffers, the tree checker detects some corruption and the writeout fails because of that. Aborting the transaction can be very disruptive for a user, specially if the issue happened on a root filesystem. One example is the scenario in the Link tag below, where an isolated corruption on log tree leaves was causing transaction aborts when syncing the log. Link: https://lore.kernel.org/linux-btrfs/ae169fc6-f504-28f0-a098-6fa6a4dfb612@leemhuis.info/ CC: stable@vger.kernel.org # 5.15+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
|
bf216c168f |
btrfs: fix warning during log replay when bumping inode link count
[ Upstream commit 769030e11847c5412270c0726ff21d3a1f0a3131 ]
During log replay, at add_link(), we may increment the link count of
another inode that has a reference that conflicts with a new reference
for the inode currently being processed.
During log replay, at add_link(), we may drop (unlink) a reference from
some inode in the subvolume tree if that reference conflicts with a new
reference found in the log for the inode we are currently processing.
After the unlink, If the link count has decreased from 1 to 0, then we
increment the link count to prevent the inode from being deleted if it's
evicted by an iput() call, because we may have references to add to that
inode later on (and we will fixup its link count later during log replay).
However incrementing the link count from 0 to 1 triggers a warning:
$ cat fs/inode.c
(...)
void inc_nlink(struct inode *inode)
{
if (unlikely(inode->i_nlink == 0)) {
WARN_ON(!(inode->i_state & I_LINKABLE));
atomic_long_dec(&inode->i_sb->s_remove_count);
}
(...)
The I_LINKABLE flag is only set when creating an O_TMPFILE file, so it's
never set during log replay.
Most of the time, the warning isn't triggered even if we dropped the last
reference of the conflicting inode, and this is because:
1) The conflicting inode was previously marked for fixup, through a call
to link_to_fixup_dir(), which increments the inode's link count;
2) And the last iput() on the inode has not triggered eviction of the
inode, nor was eviction triggered after the iput(). So at add_link(),
even if we unlink the last reference of the inode, its link count ends
up being 1 and not 0.
So this means that if eviction is triggered after link_to_fixup_dir() is
called, at add_link() we will read the inode back from the subvolume tree
and have it with a correct link count, matching the number of references
it has on the subvolume tree. So if when we are at add_link() the inode
has exactly one reference only, its link count is 1, and after the unlink
its link count becomes 0.
So fix this by using set_nlink() instead of inc_nlink(), as the former
accepts a transition from 0 to 1 and it's what we use in other similar
contexts (like at link_to_fixup_dir().
Also make add_inode_ref() use set_nlink() instead of inc_nlink() to
bump the link count from 0 to 1.
The warning is actually harmless, but it may scare users. Josef also ran
into it recently.
CC: stable@vger.kernel.org # 5.1+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
||
|
|
985bbad184 |
btrfs: add and use helper for unlinking inode during log replay
[ Upstream commit 313ab75399d0c7d0ebc718c545572c1b4d8d22ef ] During log replay there is this pattern of running delayed items after every inode unlink. To avoid repeating this several times, move the logic into an helper function and use it instead of calling btrfs_unlink_inode() followed by btrfs_run_delayed_items(). Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
|
|
9688152112 |
btrfs: remove no longer needed logic for replaying directory deletes
[ Upstream commit ccae4a19c9140a34a0c5f0658812496dd8bbdeaf ] Now that we log only dir index keys when logging a directory, we no longer need to deal with dir item keys in the log replay code for replaying directory deletes. This is also true for the case when we replay a log tree created by a kernel that still logs dir items. So remove the remaining code of the replay of directory deletes algorithm that deals with dir item keys. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
|
|
7697ca60db |
btrfs: remove root argument from btrfs_unlink_inode()
[ Upstream commit 4467af8809299c12529b5c21481c1d44a3b209f9 ] The root argument passed to btrfs_unlink_inode() and its callee, __btrfs_unlink_inode(), always matches the root of the given directory and the given inode. So remove the argument and make __btrfs_unlink_inode() use the root of the directory. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
|
|
da7ad2ec58 |
btrfs: pass the dentry to btrfs_log_new_name() instead of the inode
[ Upstream commit d5f5bd546552a94eefd68c42f40f778c40a89d2c ] In the next patch in the series, there will be the need to access the old name, and its length, of an inode when logging the inode during a rename. So instead of passing the inode to btrfs_log_new_name() pass the dentry, because from the dentry we can get the inode, the name and its length. This will avoid passing 3 new parameters to btrfs_log_new_name() in the next patch - the name, its length and an index number. This way we end up passing only 1 new parameter, the index number. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
|
|
6379a9af7c |
btrfs: fix lost error handling when looking up extended ref on log replay
commit 7a6b75b79902e47f46328b57733f2604774fa2d9 upstream.
During log replay, when processing inode references, if we get an error
when looking up for an extended reference at __add_inode_ref(), we ignore
it and proceed, returning success (0) if no other error happens after the
lookup. This is obviously wrong because in case an extended reference
exists and it encodes some name not in the log, we need to unlink it,
otherwise the filesystem state will not match the state it had after the
last fsync.
So just make __add_inode_ref() return an error it gets from the extended
reference lookup.
Fixes:
|
||
|
|
6618205047 |
btrfs: add additional parameters to btrfs_init_tree_ref/btrfs_init_data_ref
[ Upstream commit f42c5da6c12e990d8ec415199600b4d593c63bf5 ] In order to make 'real_root' used only in ref-verify it's required to have the necessary context to perform the same checks that this member is used for. So add 'mod_root' which will contain the root on behalf of which a delayed ref was created and a 'skip_group' parameter which will contain callsite-specific override of skip_qgroup. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
|
|
3d0e7373b2 |
btrfs: always log symlinks in full mode
commit d0e64a981fd841cb0f28fcd6afcac55e6f1e6994 upstream. On Linux, empty symlinks are invalid, and attempting to create one with the system call symlink(2) results in an -ENOENT error and this is explicitly documented in the man page. If we rename a symlink that was created in the current transaction and its parent directory was logged before, we actually end up logging the symlink without logging its content, which is stored in an inline extent. That means that after a power failure we can end up with an empty symlink, having no content and an i_size of 0 bytes. It can be easily reproduced like this: $ mkfs.btrfs -f /dev/sdc $ mount /dev/sdc /mnt $ mkdir /mnt/testdir $ sync # Create a file inside the directory and fsync the directory. $ touch /mnt/testdir/foo $ xfs_io -c "fsync" /mnt/testdir # Create a symlink inside the directory and then rename the symlink. $ ln -s /mnt/testdir/foo /mnt/testdir/bar $ mv /mnt/testdir/bar /mnt/testdir/baz # Now fsync again the directory, this persist the log tree. $ xfs_io -c "fsync" /mnt/testdir <power failure> $ mount /dev/sdc /mnt $ stat -c %s /mnt/testdir/baz 0 $ readlink /mnt/testdir/baz $ Fix this by always logging symlinks in full mode (LOG_INODE_ALL), so that their content is also logged. A test case for fstests will follow. CC: stable@vger.kernel.org # 4.9+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
|
cf12ce1bd7 |
btrfs: fix leaked plug after failure syncing log on zoned filesystems
commit 50ff57888d0b13440e7f4cde05dc339ee8d0f1f8 upstream.
On a zoned filesystem, if we fail to allocate the root node for the log
root tree while syncing the log, we end up returning without finishing
the IO plug we started before, resulting in leaking resources as we
have started writeback for extent buffers of a log tree before. That
allocation failure, which typically is either -ENOMEM or -ENOSPC, is not
fatal and the fsync can safely fallback to a full transaction commit.
So release the IO plug if we fail to allocate the extent buffer for the
root of the log root tree when syncing the log on a zoned filesystem.
Fixes:
|
||
|
|
4c5d94990f |
btrfs: skip reserved bytes warning on unmount after log cleanup failure
commit 40cdc509877bacb438213b83c7541c5e24a1d9ec upstream.
After the recent changes made by commit c2e39305299f01 ("btrfs: clear
extent buffer uptodate when we fail to write it") and its followup fix,
commit 651740a5024117 ("btrfs: check WRITE_ERR when trying to read an
extent buffer"), we can now end up not cleaning up space reservations of
log tree extent buffers after a transaction abort happens, as well as not
cleaning up still dirty extent buffers.
This happens because if writeback for a log tree extent buffer failed,
then we have cleared the bit EXTENT_BUFFER_UPTODATE from the extent buffer
and we have also set the bit EXTENT_BUFFER_WRITE_ERR on it. Later on,
when trying to free the log tree with free_log_tree(), which iterates
over the tree, we can end up getting an -EIO error when trying to read
a node or a leaf, since read_extent_buffer_pages() returns -EIO if an
extent buffer does not have EXTENT_BUFFER_UPTODATE set and has the
EXTENT_BUFFER_WRITE_ERR bit set. Getting that -EIO means that we return
immediately as we can not iterate over the entire tree.
In that case we never update the reserved space for an extent buffer in
the respective block group and space_info object.
When this happens we get the following traces when unmounting the fs:
[174957.284509] BTRFS: error (device dm-0) in cleanup_transaction:1913: errno=-5 IO failure
[174957.286497] BTRFS: error (device dm-0) in free_log_tree:3420: errno=-5 IO failure
[174957.399379] ------------[ cut here ]------------
[174957.402497] WARNING: CPU: 2 PID: 3206883 at fs/btrfs/block-group.c:127 btrfs_put_block_group+0x77/0xb0 [btrfs]
[174957.407523] Modules linked in: btrfs overlay dm_zero (...)
[174957.424917] CPU: 2 PID: 3206883 Comm: umount Tainted: G W 5.16.0-rc5-btrfs-next-109 #1
[174957.426689] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[174957.428716] RIP: 0010:btrfs_put_block_group+0x77/0xb0 [btrfs]
[174957.429717] Code: 21 48 8b bd (...)
[174957.432867] RSP: 0018:ffffb70d41cffdd0 EFLAGS: 00010206
[174957.433632] RAX: 0000000000000001 RBX: ffff8b09c3848000 RCX: ffff8b0758edd1c8
[174957.434689] RDX: 0000000000000001 RSI: ffffffffc0b467e7 RDI: ffff8b0758edd000
[174957.436068] RBP: ffff8b0758edd000 R08: 0000000000000000 R09: 0000000000000000
[174957.437114] R10: 0000000000000246 R11: 0000000000000000 R12: ffff8b09c3848148
[174957.438140] R13: ffff8b09c3848198 R14: ffff8b0758edd188 R15: dead000000000100
[174957.439317] FS: 00007f328fb82800(0000) GS:ffff8b0a2d200000(0000) knlGS:0000000000000000
[174957.440402] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[174957.441164] CR2: 00007fff13563e98 CR3: 0000000404f4e005 CR4: 0000000000370ee0
[174957.442117] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[174957.443076] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[174957.443948] Call Trace:
[174957.444264] <TASK>
[174957.444538] btrfs_free_block_groups+0x255/0x3c0 [btrfs]
[174957.445238] close_ctree+0x301/0x357 [btrfs]
[174957.445803] ? call_rcu+0x16c/0x290
[174957.446250] generic_shutdown_super+0x74/0x120
[174957.446832] kill_anon_super+0x14/0x30
[174957.447305] btrfs_kill_super+0x12/0x20 [btrfs]
[174957.447890] deactivate_locked_super+0x31/0xa0
[174957.448440] cleanup_mnt+0x147/0x1c0
[174957.448888] task_work_run+0x5c/0xa0
[174957.449336] exit_to_user_mode_prepare+0x1e5/0x1f0
[174957.449934] syscall_exit_to_user_mode+0x16/0x40
[174957.450512] do_syscall_64+0x48/0xc0
[174957.450980] entry_SYSCALL_64_after_hwframe+0x44/0xae
[174957.451605] RIP: 0033:0x7f328fdc4a97
[174957.452059] Code: 03 0c 00 f7 (...)
[174957.454320] RSP: 002b:00007fff13564ec8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
[174957.455262] RAX: 0000000000000000 RBX: 00007f328feea264 RCX: 00007f328fdc4a97
[174957.456131] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000560b8ae51dd0
[174957.457118] RBP: 0000560b8ae51ba0 R08: 0000000000000000 R09: 00007fff13563c40
[174957.458005] R10: 00007f328fe49fc0 R11: 0000000000000246 R12: 0000000000000000
[174957.459113] R13: 0000560b8ae51dd0 R14: 0000560b8ae51cb0 R15: 0000000000000000
[174957.460193] </TASK>
[174957.460534] irq event stamp: 0
[174957.461003] hardirqs last enabled at (0): [<0000000000000000>] 0x0
[174957.461947] hardirqs last disabled at (0): [<ffffffffb0e94214>] copy_process+0x934/0x2040
[174957.463147] softirqs last enabled at (0): [<ffffffffb0e94214>] copy_process+0x934/0x2040
[174957.465116] softirqs last disabled at (0): [<0000000000000000>] 0x0
[174957.466323] ---[ end trace bc7ee0c490bce3af ]---
[174957.467282] ------------[ cut here ]------------
[174957.468184] WARNING: CPU: 2 PID: 3206883 at fs/btrfs/block-group.c:3976 btrfs_free_block_groups+0x330/0x3c0 [btrfs]
[174957.470066] Modules linked in: btrfs overlay dm_zero (...)
[174957.483137] CPU: 2 PID: 3206883 Comm: umount Tainted: G W 5.16.0-rc5-btrfs-next-109 #1
[174957.484691] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[174957.486853] RIP: 0010:btrfs_free_block_groups+0x330/0x3c0 [btrfs]
[174957.488050] Code: 00 00 00 ad de (...)
[174957.491479] RSP: 0018:ffffb70d41cffde0 EFLAGS: 00010206
[174957.492520] RAX: ffff8b08d79310b0 RBX: ffff8b09c3848000 RCX: 0000000000000000
[174957.493868] RDX: 0000000000000001 RSI: fffff443055ee600 RDI: ffffffffb1131846
[174957.495183] RBP: ffff8b08d79310b0 R08: 0000000000000000 R09: 0000000000000000
[174957.496580] R10: 0000000000000001 R11: 0000000000000000 R12: ffff8b08d7931000
[174957.498027] R13: ffff8b09c38492b0 R14: dead000000000122 R15: dead000000000100
[174957.499438] FS: 00007f328fb82800(0000) GS:ffff8b0a2d200000(0000) knlGS:0000000000000000
[174957.500990] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[174957.502117] CR2: 00007fff13563e98 CR3: 0000000404f4e005 CR4: 0000000000370ee0
[174957.503513] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[174957.504864] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[174957.506167] Call Trace:
[174957.506654] <TASK>
[174957.507047] close_ctree+0x301/0x357 [btrfs]
[174957.507867] ? call_rcu+0x16c/0x290
[174957.508567] generic_shutdown_super+0x74/0x120
[174957.509447] kill_anon_super+0x14/0x30
[174957.510194] btrfs_kill_super+0x12/0x20 [btrfs]
[174957.511123] deactivate_locked_super+0x31/0xa0
[174957.511976] cleanup_mnt+0x147/0x1c0
[174957.512610] task_work_run+0x5c/0xa0
[174957.513309] exit_to_user_mode_prepare+0x1e5/0x1f0
[174957.514231] syscall_exit_to_user_mode+0x16/0x40
[174957.515069] do_syscall_64+0x48/0xc0
[174957.515718] entry_SYSCALL_64_after_hwframe+0x44/0xae
[174957.516688] RIP: 0033:0x7f328fdc4a97
[174957.517413] Code: 03 0c 00 f7 d8 (...)
[174957.521052] RSP: 002b:00007fff13564ec8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
[174957.522514] RAX: 0000000000000000 RBX: 00007f328feea264 RCX: 00007f328fdc4a97
[174957.523950] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000560b8ae51dd0
[174957.525375] RBP: 0000560b8ae51ba0 R08: 0000000000000000 R09: 00007fff13563c40
[174957.526763] R10: 00007f328fe49fc0 R11: 0000000000000246 R12: 0000000000000000
[174957.528058] R13: 0000560b8ae51dd0 R14: 0000560b8ae51cb0 R15: 0000000000000000
[174957.529404] </TASK>
[174957.529843] irq event stamp: 0
[174957.530256] hardirqs last enabled at (0): [<0000000000000000>] 0x0
[174957.531061] hardirqs last disabled at (0): [<ffffffffb0e94214>] copy_process+0x934/0x2040
[174957.532075] softirqs last enabled at (0): [<ffffffffb0e94214>] copy_process+0x934/0x2040
[174957.533083] softirqs last disabled at (0): [<0000000000000000>] 0x0
[174957.533865] ---[ end trace bc7ee0c490bce3b0 ]---
[174957.534452] BTRFS info (device dm-0): space_info 4 has 1070841856 free, is not full
[174957.535404] BTRFS info (device dm-0): space_info total=1073741824, used=2785280, pinned=0, reserved=49152, may_use=0, readonly=65536 zone_unusable=0
[174957.537029] BTRFS info (device dm-0): global_block_rsv: size 0 reserved 0
[174957.537859] BTRFS info (device dm-0): trans_block_rsv: size 0 reserved 0
[174957.538697] BTRFS info (device dm-0): chunk_block_rsv: size 0 reserved 0
[174957.539552] BTRFS info (device dm-0): delayed_block_rsv: size 0 reserved 0
[174957.540403] BTRFS info (device dm-0): delayed_refs_rsv: size 0 reserved 0
This also means that in case we have log tree extent buffers that are
still dirty, we can end up not cleaning them up in case we find an
extent buffer with EXTENT_BUFFER_WRITE_ERR set on it, as in that case
we have no way for iterating over the rest of the tree.
This issue is very often triggered with test cases generic/475 and
generic/648 from fstests.
The issue could almost be fixed by iterating over the io tree attached to
each log root which keeps tracks of the range of allocated extent buffers,
log_root->dirty_log_pages, however that does not work and has some
inconveniences:
1) After we sync the log, we clear the range of the extent buffers from
the io tree, so we can't find them after writeback. We could keep the
ranges in the io tree, with a separate bit to signal they represent
extent buffers already written, but that means we need to hold into
more memory until the transaction commits.
How much more memory is used depends a lot on whether we are able to
allocate contiguous extent buffers on disk (and how often) for a log
tree - if we are able to, then a single extent state record can
represent multiple extent buffers, otherwise we need multiple extent
state record structures to track each extent buffer.
In fact, my earlier approach did that:
https://lore.kernel.org/linux-btrfs/3aae7c6728257c7ce2279d6660ee2797e5e34bbd.1641300250.git.fdmanana@suse.com/
However that can cause a very significant negative impact on
performance, not only due to the extra memory usage but also because
we get a larger and deeper dirty_log_pages io tree.
We got a report that, on beefy machines at least, we can get such
performance drop with fsmark for example:
https://lore.kernel.org/linux-btrfs/20220117082426.GE32491@xsang-OptiPlex-9020/
2) We would be doing it only to deal with an unexpected and exceptional
case, which is basically failure to read an extent buffer from disk
due to IO failures. On a healthy system we don't expect transaction
aborts to happen after all;
3) Instead of relying on iterating the log tree or tracking the ranges
of extent buffers in the dirty_log_pages io tree, using the radix
tree that tracks extent buffers (fs_info->buffer_radix) to find all
log tree extent buffers is not reliable either, because after writeback
of an extent buffer it can be evicted from memory by the release page
callback of the btree inode (btree_releasepage()).
Since there's no way to be able to properly cleanup a log tree without
being able to read its extent buffers from disk and without using more
memory to track the logical ranges of the allocated extent buffers do
the following:
1) When we fail to cleanup a log tree, setup a flag that indicates that
failure;
2) Trigger writeback of all log tree extent buffers that are still dirty,
and wait for the writeback to complete. This is just to cleanup their
state, page states, page leaks, etc;
3) When unmounting the fs, ignore if the number of bytes reserved in a
block group and in a space_info is not 0 if, and only if, we failed to
cleanup a log tree. Also ignore only for metadata block groups and the
metadata space_info object.
This is far from a perfect solution, but it serves to silence test
failures such as those from generic/475 and generic/648. However having
a non-zero value for the reserved bytes counters on unmount after a
transaction abort, is not such a terrible thing and it's completely
harmless, it does not affect the filesystem integrity in any way.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
||
|
|
4aef4c9005 |
btrfs: add missing run of delayed items after unlink during log replay
commit 4751dc99627e4d1465c5bfa8cb7ab31ed418eff5 upstream. During log replay, whenever we need to check if a name (dentry) exists in a directory we do searches on the subvolume tree for inode references or or directory entries (BTRFS_DIR_INDEX_KEY keys, and BTRFS_DIR_ITEM_KEY keys as well, before kernel 5.17). However when during log replay we unlink a name, through btrfs_unlink_inode(), we may not delete inode references and dir index keys from a subvolume tree and instead just add the deletions to the delayed inode's delayed items, which will only be run when we commit the transaction used for log replay. This means that after an unlink operation during log replay, if we attempt to search for the same name during log replay, we will not see that the name was already deleted, since the deletion is recorded only on the delayed items. We run delayed items after every unlink operation during log replay, except at unlink_old_inode_refs() and at add_inode_ref(). This was due to an overlook, as delayed items should be run after evert unlink, for the reasons stated above. So fix those two cases. Fixes: |
||
|
|
5342e9f3da |
btrfs: fix lost prealloc extents beyond eof after full fsync
commit d99478874355d3a7b9d86dfb5d7590d5b1754b1f upstream. When doing a full fsync, if we have prealloc extents beyond (or at) eof, and the leaves that contain them were not modified in the current transaction, we end up not logging them. This results in losing those extents when we replay the log after a power failure, since the inode is truncated to the current value of the logged i_size. Just like for the fast fsync path, we need to always log all prealloc extents starting at or beyond i_size. The fast fsync case was fixed in commit |
||
|
|
493ff661d4 |
btrfs: fix memory leak in __add_inode_ref()
commit f35838a6930296fc1988764cfa54cb3f705c0665 upstream.
Line 1169 (#3) allocates a memory chunk for victim_name by kmalloc(),
but when the function returns in line 1184 (#4) victim_name allocated
by line 1169 (#3) is not freed, which will lead to a memory leak.
There is a similar snippet of code in this function as allocating a memory
chunk for victim_name in line 1104 (#1) as well as releasing the memory
in line 1116 (#2).
We should kfree() victim_name when the return value of backref_in_log()
is less than zero and before the function returns in line 1184 (#4).
1057 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1058 struct btrfs_root *root,
1059 struct btrfs_path *path,
1060 struct btrfs_root *log_root,
1061 struct btrfs_inode *dir,
1062 struct btrfs_inode *inode,
1063 u64 inode_objectid, u64 parent_objectid,
1064 u64 ref_index, char *name, int namelen,
1065 int *search_done)
1066 {
1104 victim_name = kmalloc(victim_name_len, GFP_NOFS);
// #1: kmalloc (victim_name-1)
1105 if (!victim_name)
1106 return -ENOMEM;
1112 ret = backref_in_log(log_root, &search_key,
1113 parent_objectid, victim_name,
1114 victim_name_len);
1115 if (ret < 0) {
1116 kfree(victim_name); // #2: kfree (victim_name-1)
1117 return ret;
1118 } else if (!ret) {
1169 victim_name = kmalloc(victim_name_len, GFP_NOFS);
// #3: kmalloc (victim_name-2)
1170 if (!victim_name)
1171 return -ENOMEM;
1180 ret = backref_in_log(log_root, &search_key,
1181 parent_objectid, victim_name,
1182 victim_name_len);
1183 if (ret < 0) {
1184 return ret; // #4: missing kfree (victim_name-2)
1185 } else if (!ret) {
1241 return 0;
1242 }
Fixes:
|
||
|
|
477675049c |
btrfs: fix re-dirty process of tree-log nodes
commit 84c25448929942edacba905cecc0474e91114e7a upstream.
There is a report of a transaction abort of -EAGAIN with the following
script.
#!/bin/sh
for d in sda sdb; do
mkfs.btrfs -d single -m single -f /dev/\${d}
done
mount /dev/sda /mnt/test
mount /dev/sdb /mnt/scratch
for dir in test scratch; do
echo 3 >/proc/sys/vm/drop_caches
fio --directory=/mnt/\${dir} --name=fio.\${dir} --rw=read --size=50G --bs=64m \
--numjobs=$(nproc) --time_based --ramp_time=5 --runtime=480 \
--group_reporting |& tee /dev/shm/fio.\${dir}
echo 3 >/proc/sys/vm/drop_caches
done
for d in sda sdb; do
umount /dev/\${d}
done
The stack trace is shown in below.
[3310.967991] BTRFS: error (device sda) in btrfs_commit_transaction:2341: errno=-11 unknown (Error while writing out transaction)
[3310.968060] BTRFS info (device sda): forced readonly
[3310.968064] BTRFS warning (device sda): Skipping commit of aborted transaction.
[3310.968065] ------------[ cut here ]------------
[3310.968066] BTRFS: Transaction aborted (error -11)
[3310.968074] WARNING: CPU: 14 PID: 1684 at fs/btrfs/transaction.c:1946 btrfs_commit_transaction.cold+0x209/0x2c8
[3310.968131] CPU: 14 PID: 1684 Comm: fio Not tainted 5.14.10-300.fc35.x86_64 #1
[3310.968135] Hardware name: DIAWAY Tartu/Tartu, BIOS V2.01.B10 04/08/2021
[3310.968137] RIP: 0010:btrfs_commit_transaction.cold+0x209/0x2c8
[3310.968144] RSP: 0018:ffffb284ce393e10 EFLAGS: 00010282
[3310.968147] RAX: 0000000000000026 RBX: ffff973f147b0f60 RCX: 0000000000000027
[3310.968149] RDX: ffff974ecf098a08 RSI: 0000000000000001 RDI: ffff974ecf098a00
[3310.968150] RBP: ffff973f147b0f08 R08: 0000000000000000 R09: ffffb284ce393c48
[3310.968151] R10: ffffb284ce393c40 R11: ffffffff84f47468 R12: ffff973f101bfc00
[3310.968153] R13: ffff971f20cf2000 R14: 00000000fffffff5 R15: ffff973f147b0e58
[3310.968154] FS: 00007efe65468740(0000) GS:ffff974ecf080000(0000) knlGS:0000000000000000
[3310.968157] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[3310.968158] CR2: 000055691bcbe260 CR3: 000000105cfa4001 CR4: 0000000000770ee0
[3310.968160] PKRU: 55555554
[3310.968161] Call Trace:
[3310.968167] ? dput+0xd4/0x300
[3310.968174] btrfs_sync_file+0x3f1/0x490
[3310.968180] __x64_sys_fsync+0x33/0x60
[3310.968185] do_syscall_64+0x3b/0x90
[3310.968190] entry_SYSCALL_64_after_hwframe+0x44/0xae
[3310.968194] RIP: 0033:0x7efe6557329b
[3310.968200] RSP: 002b:00007ffe0236ebc0 EFLAGS: 00000293 ORIG_RAX: 000000000000004a
[3310.968203] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007efe6557329b
[3310.968204] RDX: 0000000000000000 RSI: 00007efe58d77010 RDI: 0000000000000006
[3310.968205] RBP: 0000000004000000 R08: 0000000000000000 R09: 00007efe58d77010
[3310.968207] R10: 0000000016cacc0c R11: 0000000000000293 R12: 00007efe5ce95980
[3310.968208] R13: 0000000000000000 R14: 00007efe6447c790 R15: 0000000c80000000
[3310.968212] ---[ end trace 1a346f4d3c0d96ba ]---
[3310.968214] BTRFS: error (device sda) in cleanup_transaction:1946: errno=-11 unknown
The abort occurs because of a write hole while writing out freeing tree
nodes of a tree-log tree. For zoned btrfs, we re-dirty a freed tree
node to ensure btrfs can write the region and does not leave a hole on
write on a zoned device. The current code fails to re-dirty a node
when the tree-log tree's depth is greater or equal to 2. That leads to
a transaction abort with -EAGAIN.
Fix the issue by properly re-dirtying a node on walking up the tree.
Fixes:
|
||
|
|
1084e628b8 |
btrfs: fix lost error handling when replaying directory deletes
commit 10adb1152d957a4d570ad630f93a88bb961616c1 upstream. At replay_dir_deletes(), if find_dir_range() returns an error we break out of the main while loop and then assign a value of 0 (success) to the 'ret' variable, resulting in completely ignoring that an error happened. Fix that by jumping to the 'out' label when find_dir_range() returns an error (negative value). CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
|
cfd312695b |
btrfs: check for error when looking up inode during dir entry replay
At replay_one_name(), we are treating any error from btrfs_lookup_inode() as if the inode does not exists. Fix this by checking for an error and returning it to the caller. CC: stable@vger.kernel.org # 4.14+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
|
|
8dcbc26194 |
btrfs: unify lookup return value when dir entry is missing
btrfs_lookup_dir_index_item() and btrfs_lookup_dir_item() lookup for dir entries and both are used during log replay or when updating a log tree during an unlink. However when the dir item does not exists, btrfs_lookup_dir_item() returns NULL while btrfs_lookup_dir_index_item() returns PTR_ERR(-ENOENT), and if the dir item exists but there is no matching entry for a given name or index, both return NULL. This makes the call sites during log replay to be more verbose than necessary and it makes it easy to miss this slight difference. Since we don't need to distinguish between those two cases, make btrfs_lookup_dir_index_item() always return NULL when there is no matching directory entry - either because there isn't any dir entry or because there is one but it does not match the given name and index. Also rename the argument 'objectid' of btrfs_lookup_dir_index_item() to 'index' since it is supposed to match an index number, and the name 'objectid' is not very good because it can easily be confused with an inode number (like the inode number a dir entry points to). CC: stable@vger.kernel.org # 4.14+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
|
|
52db77791f |
btrfs: deal with errors when adding inode reference during log replay
At __inode_add_ref(), we treating any error returned from btrfs_lookup_dir_item() or from btrfs_lookup_dir_index_item() as meaning that there is no existing directory entry in the fs/subvolume tree. This is not correct since we can get errors such as, for example, -EIO when reading extent buffers while searching the fs/subvolume's btree. So fix that and return the error to the caller when it is not -ENOENT. CC: stable@vger.kernel.org # 4.14+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
|
|
e15ac64137 |
btrfs: deal with errors when replaying dir entry during log replay
At replay_one_one(), we are treating any error returned from btrfs_lookup_dir_item() or from btrfs_lookup_dir_index_item() as meaning that there is no existing directory entry in the fs/subvolume tree. This is not correct since we can get errors such as, for example, -EIO when reading extent buffers while searching the fs/subvolume's btree. So fix that and return the error to the caller when it is not -ENOENT. CC: stable@vger.kernel.org # 4.14+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
|
|
77a5b9e3d1 |
btrfs: deal with errors when checking if a dir entry exists during log replay
Currently inode_in_dir() ignores errors returned from btrfs_lookup_dir_index_item() and from btrfs_lookup_dir_item(), treating any errors as if the directory entry does not exists in the fs/subvolume tree, which is obviously not correct, as we can get errors such as -EIO when reading extent buffers while searching the fs/subvolume's tree. Fix that by making inode_in_dir() return the errors and making its only caller, add_inode_ref(), deal with returned errors as well. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
|
|
3736127a3a |
btrfs: tree-log: check btrfs_lookup_data_extent return value
Function btrfs_lookup_data_extent calls btrfs_search_slot to verify if the EXTENT_ITEM exists in the extent tree. btrfs_search_slot can return values bellow zero if an error happened. Function replay_one_extent currently checks if the search found something (0 returned) and increments the reference, and if not, it seems to evaluate as 'not found'. Fix the condition by checking if the value was bellow zero and return early. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Marcos Paulo de Souza <mpdesouza@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
|
|
8be2ba2e0e |
btrfs: avoid unnecessarily logging directories that had no changes
There are several cases where when logging an inode we need to log its parent directories or logging subdirectories when logging a directory. There are cases however where we end up logging a directory even if it was not changed in the current transaction, no dentries added or removed since the last transaction. While this is harmless from a functional point of view, it is a waste time as it brings no advantage. One example where this is triggered is the following: $ mkfs.btrfs -f /dev/sdc $ mount /dev/sdc /mnt $ mkdir /mnt/A $ mkdir /mnt/B $ mkdir /mnt/C $ touch /mnt/A/foo $ ln /mnt/A/foo /mnt/B/bar $ ln /mnt/A/foo /mnt/C/baz $ sync $ rm -f /mnt/A/foo $ xfs_io -c "fsync" /mnt/B/bar This last fsync ends up logging directories A, B and C, however we only need to log directory A, as B and C were not changed since the last transaction commit. So fix this by changing need_log_inode(), to return false in case the given inode is a directory and has a ->last_trans value smaller than the current transaction's ID. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
|
|
1f29537302 |
btrfs: update comment at log_conflicting_inodes()
A comment at log_conflicting_inodes() mentions that we check the inode's
logged_trans field instead of using btrfs_inode_in_log() because the field
last_log_commit is not updated when we log that an inode exists and the
inode has the full sync flag (BTRFS_INODE_NEEDS_FULL_SYNC) set. The part
about the full sync flag is not true anymore since commit
|
||
|
|
d135a53396 |
btrfs: remove no longer needed full sync flag check at inode_logged()
Now that we are checking if the inode's logged_trans is 0 to detect the possibility of the inode having been evicted and reloaded, the test for the full sync flag (BTRFS_INODE_NEEDS_FULL_SYNC) is no longer needed at tree-log.c:inode_logged(). Its purpose was to detect the possibility of a previous eviction as well, since when an inode is loaded the full sync flag is always set on it (and only cleared after the inode is logged). So just remove the check and update the comment. The check for the inode's logged_trans being 0 was added recently by the patch with the subject "btrfs: eliminate some false positives when checking if inode was logged". Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
|
|
77eea05e78 |
btrfs: add ro compat flags to inodes
Currently, inode flags are fully backwards incompatible in btrfs. If we introduce a new inode flag, then tree-checker will detect it and fail. This can even cause us to fail to mount entirely. To make it possible to introduce new flags which can be read-only compatible, like VERITY, we add new ro flags to btrfs without treating them quite so harshly in tree-checker. A read-only file system can survive an unexpected flag, and can be mounted. As for the implementation, it unfortunately gets a little complicated. The on-disk representation of the inode, btrfs_inode_item, has an __le64 for flags but the in-memory representation, btrfs_inode, uses a u32. David Sterba had the nice idea that we could reclaim those wasted 32 bits on disk and use them for the new ro_compat flags. It turns out that the tree-checker code which checks for unknown flags is broken, and ignores the upper 32 bits we are hoping to use. The issue is that the flags use the literal 1 rather than 1ULL, so the flags are signed ints, and one of them is specifically (1 << 31). As a result, the mask which ORs the flags is a negative integer on machines where int is 32 bit twos complement. When tree-checker evaluates the expression: btrfs_inode_flags(leaf, iitem) & ~BTRFS_INODE_FLAG_MASK) The mask is something like 0x80000abc, which gets promoted to u64 with sign extension to 0xffffffff80000abc. Negating that 64 bit mask leaves all the upper bits zeroed, and we can't detect unexpected flags. This suggests that we can't use those bits after all. Luckily, we have good reason to believe that they are zero anyway. Inode flags are metadata, which is always checksummed, so any bit flips that would introduce 1s would cause a checksum failure anyway (excluding the improbable case of the checksum getting corrupted exactly badly). Further, unless the 1 << 31 flag is used, the cast to u64 of the 32 bit inode flag should preserve its value and not add leading zeroes (at least for twos complement). The only place that flag (BTRFS_INODE_ROOT_ITEM_INIT) is used is in a special inode embedded in the root item, and indeed for that inode we see 0xffffffff80000000 as the flags on disk. However, that inode is never seen by tree checker, nor is it used in a context where verity might be meaningful. Theoretically, a future ro flag might cause trouble on that inode, so we should proactively clean up that mess before it does. With the introduction of the new ro flags, keep two separate unsigned masks and check them against the appropriate u32. Since we no longer run afoul of sign extension, this also stops writing out 0xffffffff80000000 in root_item inodes going forward. Signed-off-by: Boris Burkov <boris@bur.io> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
|
|
6e8e777deb |
btrfs: eliminate some false positives when checking if inode was logged
When checking if an inode was previously logged in the current transaction through the helper inode_logged(), we can return some false positives that can be easily eliminated. These correspond to the cases where an inode has a ->logged_trans value that is not zero and its value is smaller then the ID of the current transaction. This means we know exactly that the inode was never logged before in the current transaction, so we can return false and avoid the callers to do extra work: 1) Having btrfs_del_dir_entries_in_log() and btrfs_del_inode_ref_in_log() unnecessarily join a log transaction and do deletion searches in a log tree that will not find anything. This just adds unnecessary contention on extent buffer locks; 2) Having btrfs_log_new_name() unnecessarily log an inode when it is not needed. If the inode was not logged before, we don't need to log it in LOG_INODE_EXISTS mode. So just make sure that any false positive only happens when ->logged_trans has a value of 0. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
|
|
214cc18432 |
btrfs: constify and cleanup variables in comparators
Comparators just read the data and thus get const parameters. This should be also preserved by the local variables, update all comparators passed to sort or bsearch. Cleanups: - unnecessary casts are dropped - btrfs_cmp_device_free_bytes is cleaned up to follow the common pattern and 'inline' is dropped as the function address is taken Signed-off-by: David Sterba <dsterba@suse.com> |
||
|
|
2ac691d8b3 |
btrfs: avoid unnecessary lock and leaf splits when updating inode in the log
During a fast fsync, if we have already fsynced the file before and in the
current transaction, we can make the inode item update more efficient and
avoid acquiring a write lock on the leaf's parent.
To update the inode item we are always using btrfs_insert_empty_item() to
get a path pointing to the inode item, which calls btrfs_search_slot()
with an "ins_len" argument of 'sizeof(struct btrfs_inode_item) +
sizeof(struct btrfs_item)', and that always results in the search taking
a write lock on the level 1 node that is the parent of the leaf that
contains the inode item. This adds unnecessary lock contention on log
trees when we have multiple fsyncs in parallel against inodes in the same
subvolume, which has a very significant impact due to the fact that log
trees are short lived and their height very rarely goes beyond level 2.
Also, by using btrfs_insert_empty_item() when we need to update the inode
item, we also end up splitting the leaf of the existing inode item when
the leaf has an amount of free space smaller than the size of an inode
item.
Improve this by using btrfs_seach_slot(), with a 0 "ins_len" argument,
when we know the inode item already exists in the log. This avoids these
two inefficiencies.
The following script, using fio, was used to perform the tests:
$ cat fio-test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
MKFS_OPTIONS="-d single -m single"
if [ $# -ne 4 ]; then
echo "Use $0 NUM_JOBS FILE_SIZE FSYNC_FREQ BLOCK_SIZE"
exit 1
fi
NUM_JOBS=$1
FILE_SIZE=$2
FSYNC_FREQ=$3
BLOCK_SIZE=$4
cat <<EOF > /tmp/fio-job.ini
[writers]
rw=randwrite
fsync=$FSYNC_FREQ
fallocate=none
group_reporting=1
direct=0
bs=$BLOCK_SIZE
ioengine=sync
size=$FILE_SIZE
directory=$MNT
numjobs=$NUM_JOBS
EOF
echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
echo
echo "Using config:"
echo
cat /tmp/fio-job.ini
echo
echo "mount options: $MOUNT_OPTIONS"
echo
umount $MNT &> /dev/null
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
fio /tmp/fio-job.ini
umount $MNT
The tests were done on a physical machine, with 12 cores, 64G of RAM,
using a NVMEe device and using a non-debug kernel config (the default one
from Debian). The summary line from fio is provided below for each test
run.
With 8 jobs, file size 256M, fsync frequency of 4 and a block size of 4K:
Before: WRITE: bw=28.3MiB/s (29.7MB/s), 28.3MiB/s-28.3MiB/s (29.7MB/s-29.7MB/s), io=2048MiB (2147MB), run=72297-72297msec
After: WRITE: bw=28.7MiB/s (30.1MB/s), 28.7MiB/s-28.7MiB/s (30.1MB/s-30.1MB/s), io=2048MiB (2147MB), run=71411-71411msec
+1.4% throughput, -1.2% runtime
With 16 jobs, file size 256M, fsync frequency of 4 and a block size of 4K:
Before: WRITE: bw=40.0MiB/s (42.0MB/s), 40.0MiB/s-40.0MiB/s (42.0MB/s-42.0MB/s), io=4096MiB (4295MB), run=99980-99980msec
After: WRITE: bw=40.9MiB/s (42.9MB/s), 40.9MiB/s-40.9MiB/s (42.9MB/s-42.9MB/s), io=4096MiB (4295MB), run=97933-97933msec
+2.2% throughput, -2.1% runtime
The changes are small but it's possible to be better on faster hardware as
in the test machine used disk utilization was pretty much 100% during the
whole time the tests were running (observed with 'iostat -xz 1').
The tests also included the previous patch with the subject of:
"btrfs: avoid unnecessary log mutex contention when syncing log".
So they compared a branch without that patch and without this patch versus
a branch with these two patches applied.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
||
|
|
e68107e51f |
btrfs: remove unnecessary list head initialization when syncing log
One of the last steps of syncing the log is to remove all log contexts from the root's list of contexts, done at btrfs_remove_all_log_ctxs(). There we iterate over all the contexts in the list and delete each one from the list, and after that we call INIT_LIST_HEAD() on the list. That is unnecessary since at that point the list is empty. So just remove the INIT_LIST_HEAD() call. It's not needed, increases code size (bloat-o-meter reported a delta of -122 for btrfs_sync_log() after this change) and increases two critical sections delimited by log mutexes. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
|
|
e1a6d26483 |
btrfs: avoid unnecessary log mutex contention when syncing log
When syncing the log we acquire the root's log mutex just to update the root's last_log_commit. This is unnecessary because: 1) At this point there can only be one task updating this value, which is the task committing the current log transaction. Any task that enters btrfs_sync_log() has to wait for the previous log transaction to commit and wait for the current log transaction to commit if someone else already started it (in this case it never reaches to the point of updating last_log_commit, as that is done by the committing task); 2) All readers of the root's last_log_commit don't acquire the root's log mutex. This is to avoid blocking the readers, potentially for too long and because getting a stale value of last_log_commit does not cause any functional problem, in the worst case getting a stale value results in logging an inode unnecessarily. Plus it's actually very rare to get a stale value that results in unnecessarily logging the inode. So in order to avoid unnecessary contention on the root's log mutex, which is used for several different purposes, like starting/joining a log transaction and starting writeback of a log transaction, stop acquiring the log mutex for updating the root's last_log_commit. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
|
|
ecc64fab7d |
btrfs: fix lost inode on log replay after mix of fsync, rename and inode eviction
When checking if we need to log the new name of a renamed inode, we are checking if the inode and its parent inode have been logged before, and if not we don't log the new name. The check however is buggy, as it directly compares the logged_trans field of the inodes versus the ID of the current transaction. The problem is that logged_trans is a transient field, only stored in memory and never persisted in the inode item, so if an inode was logged before, evicted and reloaded, its logged_trans field is set to a value of 0, meaning the check will return false and the new name of the renamed inode is not logged. If the old parent directory was previously fsynced and we deleted the logged directory entries corresponding to the old name, we end up with a log that when replayed will delete the renamed inode. The following example triggers the problem: $ mkfs.btrfs -f /dev/sdc $ mount /dev/sdc /mnt $ mkdir /mnt/A $ mkdir /mnt/B $ echo -n "hello world" > /mnt/A/foo $ sync # Add some new file to A and fsync directory A. $ touch /mnt/A/bar $ xfs_io -c "fsync" /mnt/A # Now trigger inode eviction. We are only interested in triggering # eviction for the inode of directory A. $ echo 2 > /proc/sys/vm/drop_caches # Move foo from directory A to directory B. # This deletes the directory entries for foo in A from the log, and # does not add the new name for foo in directory B to the log, because # logged_trans of A is 0, which is less than the current transaction ID. $ mv /mnt/A/foo /mnt/B/foo # Now make an fsync to anything except A, B or any file inside them, # like for example create a file at the root directory and fsync this # new file. This syncs the log that contains all the changes done by # previous rename operation. $ touch /mnt/baz $ xfs_io -c "fsync" /mnt/baz <power fail> # Mount the filesystem and replay the log. $ mount /dev/sdc /mnt # Check the filesystem content. $ ls -1R /mnt /mnt/: A B baz /mnt/A: bar /mnt/B: $ # File foo is gone, it's neither in A/ nor in B/. Fix this by using the inode_logged() helper at btrfs_log_new_name(), which safely checks if an inode was logged before in the current transaction. A test case for fstests will follow soon. CC: stable@vger.kernel.org # 4.14+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
|
|
9acc8103ab |
btrfs: fix unpersisted i_size on fsync after expanding truncate
If we have an inode that does not have the full sync flag set, was changed in the current transaction, then it is logged while logging some other inode (like its parent directory for example), its i_size is increased by a truncate operation, the log is synced through an fsync of some other inode and then finally we explicitly call fsync on our inode, the new i_size is not persisted. The following example shows how to trigger it, with comments explaining how and why the issue happens: $ mkfs.btrfs -f /dev/sdc $ mount /dev/sdc /mnt $ touch /mnt/foo $ xfs_io -f -c "pwrite -S 0xab 0 1M" /mnt/bar $ sync # Fsync bar, this will be a noop since the file has not yet been # modified in the current transaction. The goal here is to clear # BTRFS_INODE_NEEDS_FULL_SYNC from the inode's runtime flags. $ xfs_io -c "fsync" /mnt/bar # Now rename both files, without changing their parent directory. $ mv /mnt/bar /mnt/bar2 $ mv /mnt/foo /mnt/foo2 # Increase the size of bar2 with a truncate operation. $ xfs_io -c "truncate 2M" /mnt/bar2 # Now fsync foo2, this results in logging its parent inode (the root # directory), and logging the parent results in logging the inode of # file bar2 (its inode item and the new name). The inode of file bar2 # is logged with an i_size of 0 bytes since it's logged in # LOG_INODE_EXISTS mode, meaning we are only logging its names (and # xattrs if it had any) and the i_size of the inode will not be changed # when the log is replayed. $ xfs_io -c "fsync" /mnt/foo2 # Now explicitly fsync bar2. This resulted in doing nothing, not # logging the inode with the new i_size of 2M and the hole from file # offset 1M to 2M. Because the inode did not have the flag # BTRFS_INODE_NEEDS_FULL_SYNC set, when it was logged through the # fsync of file foo2, its last_log_commit field was updated, # resulting in this explicit of file bar2 not doing anything. $ xfs_io -c "fsync" /mnt/bar2 # File bar2 content and size before a power failure. $ od -A d -t x1 /mnt/bar2 0000000 ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab * 1048576 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 * 2097152 <power failure> # Mount the filesystem to replay the log. $ mount /dev/sdc /mnt # Read the file again, should have the same content and size as before # the power failure happened, but it doesn't, i_size is still at 1M. $ od -A d -t x1 /mnt/bar2 0000000 ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab * 1048576 This started to happen after commit |
||
|
|
ea32af47f0 |
btrfs: zoned: fix wrong mutex unlock on failure to allocate log root tree
When syncing the log, if we fail to allocate the root node for the log
root tree:
1) We are unlocking fs_info->tree_log_mutex, but at this point we have
not yet locked this mutex;
2) We have locked fs_info->tree_root->log_mutex, but we end up not
unlocking it;
So fix this by unlocking fs_info->tree_root->log_mutex instead of
fs_info->tree_log_mutex.
Fixes:
|
||
|
|
b590b83972 |
btrfs: avoid unnecessary logging of xattrs during fast fsyncs
When logging an inode we always log all its xattrs, so that we are able
to figure out which ones should be deleted during log replay. However this
is unnecessary when we are doing a fast fsync and no xattrs were added,
changed or deleted since the last time we logged the inode in the current
transaction.
So skip the logging of xattrs when the inode was previously logged in the
current transaction and no xattrs were added, changed or deleted. If any
changes to xattrs happened, than the inode has BTRFS_INODE_COPY_EVERYTHING
set in its runtime flags and the xattrs get logged. This saves time on
scanning for xattrs, allocating memory, COWing log tree extent buffers and
adding more lock contention on the extent buffers when there are multiple
tasks logging in parallel.
The use of xattrs is common when using ACLs, some applications, or when
using security modules like SELinux where every inode gets a security
xattr added to it.
The following test script, using fio, was used on a box with 12 cores, 64G
of RAM, a NVMe device and the default non-debug kernel config from Debian.
It uses 8 concurrent jobs each writing in blocks of 64K to its own 4G file,
each file with a single xattr of 50 bytes (about the same size for an ACL
or SELinux xattr), doing random buffered writes with an fsync after each
write.
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/test
MOUNT_OPTIONS="-o ssd"
MKFS_OPTIONS="-d single -m single"
NUM_JOBS=8
FILE_SIZE=4G
cat <<EOF > /tmp/fio-job.ini
[writers]
rw=randwrite
fsync=1
fallocate=none
group_reporting=1
direct=0
bs=64K
ioengine=sync
size=$FILE_SIZE
directory=$MNT
numjobs=$NUM_JOBS
EOF
echo "performance" | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
mkfs.btrfs -f $MKFS_OPTIONS $DEV > /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
echo "Creating files before fio runs, each with 1 xattr of 50 bytes"
for ((i = 0; i < $NUM_JOBS; i++)); do
path="$MNT/writers.$i.0"
truncate -s $FILE_SIZE $path
setfattr -n user.xa1 -v $(printf '%0.sX' $(seq 50)) $path
done
fio /tmp/fio-job.ini
umount $MNT
fio output before this change:
WRITE: bw=120MiB/s (126MB/s), 120MiB/s-120MiB/s (126MB/s-126MB/s), io=32.0GiB (34.4GB), run=272145-272145msec
fio output after this change:
WRITE: bw=142MiB/s (149MB/s), 142MiB/s-142MiB/s (149MB/s-149MB/s), io=32.0GiB (34.4GB), run=230408-230408msec
+16.8% throughput, -16.6% runtime
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
||
|
|
1aeb6b563a |
btrfs: clear log tree recovering status if starting transaction fails
When a log recovery is in progress, lots of operations have to take that into account, so we keep this status per tree during the operation. Long time ago error handling revamp patch |
||
|
|
0d7d316597 |
btrfs: don't set the full sync flag when truncation does not touch extents
At btrfs_truncate() where we truncate the inode either to the same size or to a smaller size, we always set the full sync flag on the inode. This is needed in case the truncation drops or trims any file extent items that start beyond or cross the new inode size, so that the next fsync drops all inode items from the log and scans again the fs/subvolume tree to find all items that must be logged. However if the truncation does not drop or trims any file extent items, we do not need to set the full sync flag and force the next fsync to use the slow code path. So do not set the full sync flag in such cases. One use case where it is frequent to do truncations that do not change the inode size and do not drop any extents (no prealloc extents beyond i_size) is when running Microsoft's SQL Server inside a Docker container. One example workload is the one Philipp Fent reported recently, in the thread with a link below. In this workload a large number of fsyncs are preceded by such truncate operations. After this change I constantly get the runtime for that workload from Philipp to be reduced by about -12%, for example from 184 seconds down to 162 seconds. Link: https://lore.kernel.org/linux-btrfs/93c4600e-5263-5cba-adf0-6f47526e7561@in.tum.de/ Tested-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
|
|
cc6cf827dd |
Merge tag 'for-5.13-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba: "A few more fixes that people hit during testing. Zoned mode fix: - fix 32bit value wrapping when calculating superblock offsets Error handling fixes: - properly check filesystema and device uuids - properly return errors when marking extents as written - do not write supers if we have an fs error" * tag 'for-5.13-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: promote debugging asserts to full-fledged checks in validate_super btrfs: return value from btrfs_mark_extent_written() in case of error btrfs: zoned: fix zone number to sector/physical calculation btrfs: do not write supers if we have an fs error |
||
|
|
165ea85f14 |
btrfs: do not write supers if we have an fs error
Error injection testing uncovered a pretty severe problem where we could end up committing a super that pointed to the wrong tree roots, resulting in transid mismatch errors. The way we commit the transaction is we update the super copy with the current generations and bytenrs of the important roots, and then copy that into our super_for_commit. Then we allow transactions to continue again, we write out the dirty pages for the transaction, and then we write the super. If the write out fails we'll bail and skip writing the supers. However since we've allowed a new transaction to start, we can have a log attempting to sync at this point, which would be blocked on fs_info->tree_log_mutex. Once the commit fails we're allowed to do the log tree commit, which uses super_for_commit, which now points at fs tree's that were not written out. Fix this by checking BTRFS_FS_STATE_ERROR once we acquire the tree_log_mutex. This way if the transaction commit fails we're sure to see this bit set and we can skip writing the super out. This patch fixes this specific transid mismatch error I was seeing with this particular error path. CC: stable@vger.kernel.org # 5.12+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
|
|
fd2ff2774e |
Merge tag 'for-5.13-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"Error handling improvements, caught by error injection:
- handle errors during checksum deletion
- set error on mapping when ordered extent io cannot be finished
- inode link count fixup in tree-log
- missing return value checks for inode updates in tree-log
- abort transaction in rename exchange if adding second reference
fails
Fixes:
- fix fsync failure after writes to prealloc extents
- fix deadlock when cloning inline extents and low on available space
- fix compressed writes that cross stripe boundary"
* tag 'for-5.13-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
MAINTAINERS: add btrfs IRC link
btrfs: fix deadlock when cloning inline extents and low on available space
btrfs: fix fsync failure and transaction abort after writes to prealloc extents
btrfs: abort in rename_exchange if we fail to insert the second ref
btrfs: check error value from btrfs_update_inode in tree log
btrfs: fixup error handling in fixup_inode_link_counts
btrfs: mark ordered extent and inode with error if we fail to finish
btrfs: return errors from btrfs_del_csums in cleanup_ref_head
btrfs: fix error handling in btrfs_del_csums
btrfs: fix compressed writes that cross stripe boundary
|
||
|
|
f96d44743a |
btrfs: check error value from btrfs_update_inode in tree log
Error injection testing uncovered a case where we ended up with invalid link counts on an inode. This happened because we failed to notice an error when updating the inode while replaying the tree log, and committed the transaction with an invalid file system. Fix this by checking the return value of btrfs_update_inode. This resolved the link count errors I was seeing, and we already properly handle passing up the error values in these paths. CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
|
|
011b28acf9 |
btrfs: fixup error handling in fixup_inode_link_counts
This function has the following pattern
while (1) {
ret = whatever();
if (ret)
goto out;
}
ret = 0
out:
return ret;
However several places in this while loop we simply break; when there's
a problem, thus clearing the return value, and in one case we do a
return -EIO, and leak the memory for the path.
Fix this by re-arranging the loop to deal with ret == 1 coming from
btrfs_search_slot, and then simply delete the
ret = 0;
out:
bit so everybody can break if there is an error, which will allow for
proper error handling to occur.
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
||
|
|
45af60e7ce |
Merge tag 'for-5.13-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba: "A few more fixes: - fix unaligned compressed writes in zoned mode - fix false positive lockdep warning when cloning inline extent - remove wrong BUG_ON in tree-log error handling" * tag 'for-5.13-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: zoned: fix parallel compressed writes btrfs: zoned: pass start block to btrfs_use_zone_append btrfs: do not BUG_ON in link_to_fixup_dir btrfs: release path before starting transaction when cloning inline extent |
||
|
|
8ac91e6c60 |
Merge tag 'for-5.13-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"A few more fixes:
- fix fiemap to print extents that could get misreported due to
internal extent splitting and logical merging for fiemap output
- fix RCU stalls during delayed iputs
- fix removed dentries still existing after log is synced"
* tag 'for-5.13-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix removed dentries still existing after log is synced
btrfs: return whole extents in fiemap
btrfs: avoid RCU stalls while running delayed iputs
btrfs: return 0 for dev_extent_hole_check_zoned hole_start in case of error
|
||
|
|
91df99a6eb |
btrfs: do not BUG_ON in link_to_fixup_dir
While doing error injection testing I got the following panic kernel BUG at fs/btrfs/tree-log.c:1862! invalid opcode: 0000 [#1] SMP NOPTI CPU: 1 PID: 7836 Comm: mount Not tainted 5.13.0-rc1+ #305 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 RIP: 0010:link_to_fixup_dir+0xd5/0xe0 RSP: 0018:ffffb5800180fa30 EFLAGS: 00010216 RAX: fffffffffffffffb RBX: 00000000fffffffb RCX: ffff8f595287faf0 RDX: ffffb5800180fa37 RSI: ffff8f5954978800 RDI: 0000000000000000 RBP: ffff8f5953af9450 R08: 0000000000000019 R09: 0000000000000001 R10: 000151f408682970 R11: 0000000120021001 R12: ffff8f5954978800 R13: ffff8f595287faf0 R14: ffff8f5953c77dd0 R15: 0000000000000065 FS: 00007fc5284c8c40(0000) GS:ffff8f59bbd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fc5287f47c0 CR3: 000000011275e002 CR4: 0000000000370ee0 Call Trace: replay_one_buffer+0x409/0x470 ? btree_read_extent_buffer_pages+0xd0/0x110 walk_up_log_tree+0x157/0x1e0 walk_log_tree+0xa6/0x1d0 btrfs_recover_log_trees+0x1da/0x360 ? replay_one_extent+0x7b0/0x7b0 open_ctree+0x1486/0x1720 btrfs_mount_root.cold+0x12/0xea ? __kmalloc_track_caller+0x12f/0x240 legacy_get_tree+0x24/0x40 vfs_get_tree+0x22/0xb0 vfs_kern_mount.part.0+0x71/0xb0 btrfs_mount+0x10d/0x380 ? vfs_parse_fs_string+0x4d/0x90 legacy_get_tree+0x24/0x40 vfs_get_tree+0x22/0xb0 path_mount+0x433/0xa10 __x64_sys_mount+0xe3/0x120 do_syscall_64+0x3d/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xae We can get -EIO or any number of legitimate errors from btrfs_search_slot(), panicing here is not the appropriate response. The error path for this code handles errors properly, simply return the error. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
|
|
54a40fc3a1 |
btrfs: fix removed dentries still existing after log is synced
When we move one inode from one directory to another and both the inode
and its previous parent directory were logged before, we are not supposed
to have the dentry for the old parent if we have a power failure after the
log is synced. Only the new dentry is supposed to exist.
Generally this works correctly, however there is a scenario where this is
not currently working, because the old parent of the file/directory that
was moved is not authoritative for a range that includes the dir index and
dir item keys of the old dentry. This case is better explained with the
following example and reproducer:
# The test requires a very specific layout of keys and items in the
# fs/subvolume btree to trigger the bug. So we want to make sure that
# on whatever platform we are, we have the same leaf/node size.
#
# Currently in btrfs the node/leaf size can not be smaller than the page
# size (but it can be greater than the page size). So use the largest
# supported node/leaf size (64K).
$ mkfs.btrfs -f -n 65536 /dev/sdc
$ mount /dev/sdc /mnt
# "testdir" is inode 257.
$ mkdir /mnt/testdir
$ chmod 755 /mnt/testdir
# Create several empty files to have the directory "testdir" with its
# items spread over several leaves (7 in this case).
$ for ((i = 1; i <= 1200; i++)); do
echo -n > /mnt/testdir/file$i
done
# Create our test directory "dira", inode number 1458, which gets all
# its items in leaf 7.
#
# The BTRFS_DIR_ITEM_KEY item for inode 257 ("testdir") that points to
# the entry named "dira" is in leaf 2, while the BTRFS_DIR_INDEX_KEY
# item that points to that entry is in leaf 3.
#
# For this particular filesystem node size (64K), file count and file
# names, we endup with the directory entry items from inode 257 in
# leaves 2 and 3, as previously mentioned - what matters for triggering
# the bug exercised by this test case is that those items are not placed
# in leaf 1, they must be placed in a leaf different from the one
# containing the inode item for inode 257.
#
# The corresponding BTRFS_DIR_ITEM_KEY and BTRFS_DIR_INDEX_KEY items for
# the parent inode (257) are the following:
#
# item 460 key (257 DIR_ITEM 3724298081) itemoff 48344 itemsize 34
# location key (1458 INODE_ITEM 0) type DIR
# transid 6 data_len 0 name_len 4
# name: dira
#
# and:
#
# item 771 key (257 DIR_INDEX 1202) itemoff 36673 itemsize 34
# location key (1458 INODE_ITEM 0) type DIR
# transid 6 data_len 0 name_len 4
# name: dira
$ mkdir /mnt/testdir/dira
# Make sure everything done so far is durably persisted.
$ sync
# Now do a change to inode 257 ("testdir") that does not result in
# COWing leaves 2 and 3 - the leaves that contain the directory items
# pointing to inode 1458 (directory "dira").
#
# Changing permissions, the owner/group, updating or adding a xattr,
# etc, will not change (COW) leaves 2 and 3. So for the sake of
# simplicity change the permissions of inode 257, which results in
# updating its inode item and therefore change (COW) only leaf 1.
$ chmod 700 /mnt/testdir
# Now fsync directory inode 257.
#
# Since only the first leaf was changed/COWed, we log the inode item of
# inode 257 and only the dentries found in the first leaf, all have a
# key type of BTRFS_DIR_ITEM_KEY, and no keys of type
# BTRFS_DIR_INDEX_KEY, because they sort after the former type and none
# exist in the first leaf.
#
# We also log 3 items that represent ranges for dir items and dir
# indexes for which the log is authoritative:
#
# 1) a key of type BTRFS_DIR_LOG_ITEM_KEY, which indicates the log is
# authoritative for all BTRFS_DIR_ITEM_KEY keys that have an offset
# in the range [0, 2285968570] (the offset here is the crc32c of the
# dentry's name). The value 2285968570 corresponds to the offset of
# the first key of leaf 2 (which is of type BTRFS_DIR_ITEM_KEY);
#
# 2) a key of type BTRFS_DIR_LOG_ITEM_KEY, which indicates the log is
# authoritative for all BTRFS_DIR_ITEM_KEY keys that have an offset
# in the range [4293818216, (u64)-1] (the offset here is the crc32c
# of the dentry's name). The value 4293818216 corresponds to the
# offset of the highest key of type BTRFS_DIR_ITEM_KEY plus 1
# (4293818215 + 1), which is located in leaf 2;
#
# 3) a key of type BTRFS_DIR_LOG_INDEX_KEY, with an offset of 1203,
# which indicates the log is authoritative for all keys of type
# BTRFS_DIR_INDEX_KEY that have an offset in the range
# [1203, (u64)-1]. The value 1203 corresponds to the offset of the
# last key of type BTRFS_DIR_INDEX_KEY plus 1 (1202 + 1), which is
# located in leaf 3;
#
# Also, because "testdir" is a directory and inode 1458 ("dira") is a
# child directory, we log inode 1458 too.
$ xfs_io -c "fsync" /mnt/testdir
# Now move "dira", inode 1458, to be a child of the root directory
# (inode 256).
#
# Because this inode was previously logged, when "testdir" was fsynced,
# the log is updated so that the old inode reference, referring to inode
# 257 as the parent, is deleted and the new inode reference, referring
# to inode 256 as the parent, is added to the log.
$ mv /mnt/testdir/dira /mnt
# Now change some file and fsync it. This guarantees the log changes
# made by the previous move/rename operation are persisted. We do not
# need to do any special modification to the file, just any change to
# any file and sync the log.
$ xfs_io -c "pwrite -S 0xab 0 64K" -c "fsync" /mnt/testdir/file1
# Simulate a power failure and then mount again the filesystem to
# replay the log tree. We want to verify that we are able to mount the
# filesystem, meaning log replay was successful, and that directory
# inode 1458 ("dira") only has inode 256 (the filesystem's root) as
# its parent (and no longer a child of inode 257).
#
# It used to happen that during log replay we would end up having
# inode 1458 (directory "dira") with 2 hard links, being a child of
# inode 257 ("testdir") and inode 256 (the filesystem's root). This
# resulted in the tree checker detecting the issue and causing the
# mount operation to fail (with -EIO).
#
# This happened because in the log we have the new name/parent for
# inode 1458, which results in adding the new dentry with inode 256
# as the parent, but the previous dentry, under inode 257 was never
# removed - this is because the ranges for dir items and dir indexes
# of inode 257 for which the log is authoritative do not include the
# old dir item and dir index for the dentry of inode 257 referring to
# inode 1458:
#
# - for dir items, the log is authoritative for the ranges
# [0, 2285968570] and [4293818216, (u64)-1]. The dir item at inode 257
# pointing to inode 1458 has a key of (257 DIR_ITEM 3724298081), as
# previously mentioned, so the dir item is not deleted when the log
# replay procedure processes the authoritative ranges, as 3724298081
# is outside both ranges;
#
# - for dir indexes, the log is authoritative for the range
# [1203, (u64)-1], and the dir index item of inode 257 pointing to
# inode 1458 has a key of (257 DIR_INDEX 1202), as previously
# mentioned, so the dir index item is not deleted when the log
# replay procedure processes the authoritative range.
<power failure>
$ mount /dev/sdc /mnt
mount: /mnt: can't read superblock on /dev/sdc.
$ dmesg
(...)
[87849.840509] BTRFS info (device sdc): start tree-log replay
[87849.875719] BTRFS critical (device sdc): corrupt leaf: root=5 block=30539776 slot=554 ino=1458, invalid nlink: has 2 expect no more than 1 for dir
[87849.878084] BTRFS info (device sdc): leaf 30539776 gen 7 total ptrs 557 free space 2092 owner 5
[87849.879516] BTRFS info (device sdc): refs 1 lock_owner 0 current 2099108
[87849.880613] item 0 key (1181 1 0) itemoff 65275 itemsize 160
[87849.881544] inode generation 6 size 0 mode 100644
[87849.882692] item 1 key (1181 12 257) itemoff 65258 itemsize 17
(...)
[87850.562549] item 556 key (1458 12 257) itemoff 16017 itemsize 14
[87850.563349] BTRFS error (device dm-0): block=30539776 write time tree block corruption detected
[87850.564386] ------------[ cut here ]------------
[87850.564920] WARNING: CPU: 3 PID: 2099108 at fs/btrfs/disk-io.c:465 csum_one_extent_buffer+0xed/0x100 [btrfs]
[87850.566129] Modules linked in: btrfs dm_zero dm_snapshot (...)
[87850.573789] CPU: 3 PID: 2099108 Comm: mount Not tainted 5.12.0-rc8-btrfs-next-86 #1
(...)
[87850.587481] Call Trace:
[87850.587768] btree_csum_one_bio+0x244/0x2b0 [btrfs]
[87850.588354] ? btrfs_bio_fits_in_stripe+0xd8/0x110 [btrfs]
[87850.589003] btrfs_submit_metadata_bio+0xb7/0x100 [btrfs]
[87850.589654] submit_one_bio+0x61/0x70 [btrfs]
[87850.590248] submit_extent_page+0x91/0x2f0 [btrfs]
[87850.590842] write_one_eb+0x175/0x440 [btrfs]
[87850.591370] ? find_extent_buffer_nolock+0x1c0/0x1c0 [btrfs]
[87850.592036] btree_write_cache_pages+0x1e6/0x610 [btrfs]
[87850.592665] ? free_debug_processing+0x1d5/0x240
[87850.593209] do_writepages+0x43/0xf0
[87850.593798] ? __filemap_fdatawrite_range+0xa4/0x100
[87850.594391] __filemap_fdatawrite_range+0xc5/0x100
[87850.595196] btrfs_write_marked_extents+0x68/0x160 [btrfs]
[87850.596202] btrfs_write_and_wait_transaction.isra.0+0x4d/0xd0 [btrfs]
[87850.597377] btrfs_commit_transaction+0x794/0xca0 [btrfs]
[87850.598455] ? _raw_spin_unlock_irqrestore+0x32/0x60
[87850.599305] ? kmem_cache_free+0x15a/0x3d0
[87850.600029] btrfs_recover_log_trees+0x346/0x380 [btrfs]
[87850.601021] ? replay_one_extent+0x7d0/0x7d0 [btrfs]
[87850.601988] open_ctree+0x13c9/0x1698 [btrfs]
[87850.602846] btrfs_mount_root.cold+0x13/0xed [btrfs]
[87850.603771] ? kmem_cache_alloc_trace+0x7c9/0x930
[87850.604576] ? vfs_parse_fs_string+0x5d/0xb0
[87850.605293] ? kfree+0x276/0x3f0
[87850.605857] legacy_get_tree+0x30/0x50
[87850.606540] vfs_get_tree+0x28/0xc0
[87850.607163] fc_mount+0xe/0x40
[87850.607695] vfs_kern_mount.part.0+0x71/0x90
[87850.608440] btrfs_mount+0x13b/0x3e0 [btrfs]
(...)
[87850.629477] ---[ end trace 68802022b99a1ea0 ]---
[87850.630849] BTRFS: error (device sdc) in btrfs_commit_transaction:2381: errno=-5 IO failure (Error while writing out transaction)
[87850.632422] BTRFS warning (device sdc): Skipping commit of aborted transaction.
[87850.633416] BTRFS: error (device sdc) in cleanup_transaction:1978: errno=-5 IO failure
[87850.634553] BTRFS: error (device sdc) in btrfs_replay_log:2431: errno=-5 IO failure (Failed to recover log tree)
[87850.637529] BTRFS error (device sdc): open_ctree failed
In this example the inode we moved was a directory, so it was easy to
detect the problem because directories can only have one hard link and
the tree checker immediately detects that. If the moved inode was a file,
then the log replay would succeed and we would end up having both the
new hard link (/mnt/foo) and the old hard link (/mnt/testdir/foo) present,
but only the new one should be present.
Fix this by forcing re-logging of the old parent directory when logging
the new name during a rename operation. This ensures we end up with a log
that is authoritative for a range covering the keys for the old dentry,
therefore causing the old dentry do be deleted when replaying the log.
A test case for fstests will follow up soon.
Fixes:
|
||
|
|
142b507f91 |
Merge tag 'for-5.13-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba: "First batch of various fixes, here's a list of notable ones: - fix unmountable seed device after fstrim - fix silent data loss in zoned mode due to ordered extent splitting - fix race leading to unpersisted data and metadata on fsync - fix deadlock when cloning inline extents and using qgroups" * tag 'for-5.13-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: initialize return variable in cleanup_free_space_cache_v1 btrfs: zoned: sanity check zone type btrfs: fix unmountable seed device after fstrim btrfs: fix deadlock when cloning inline extents and using qgroups btrfs: fix race leading to unpersisted data and metadata on fsync btrfs: do not consider send context as valid when trying to flush qgroups btrfs: zoned: fix silent data loss after failure splitting ordered extent |
||
|
|
626e9f41f7 |
btrfs: fix race leading to unpersisted data and metadata on fsync
When doing a fast fsync on a file, there is a race which can result in the
fsync returning success to user space without logging the inode and without
durably persisting new data.
The following example shows one possible scenario for this:
$ mkfs.btrfs -f /dev/sdc
$ mount /dev/sdc /mnt
$ touch /mnt/bar
$ xfs_io -f -c "pwrite -S 0xab 0 1M" -c "fsync" /mnt/baz
# Now we have:
# file bar == inode 257
# file baz == inode 258
$ mv /mnt/baz /mnt/foo
# Now we have:
# file bar == inode 257
# file foo == inode 258
$ xfs_io -c "pwrite -S 0xcd 0 1M" /mnt/foo
# fsync bar before foo, it is important to trigger the race.
$ xfs_io -c "fsync" /mnt/bar
$ xfs_io -c "fsync" /mnt/foo
# After this:
# inode 257, file bar, is empty
# inode 258, file foo, has 1M filled with 0xcd
<power failure>
# Replay the log:
$ mount /dev/sdc /mnt
# After this point file foo should have 1M filled with 0xcd and not 0xab
The following steps explain how the race happens:
1) Before the first fsync of inode 258, when it has the "baz" name, its
->logged_trans is 0, ->last_sub_trans is 0 and ->last_log_commit is -1.
The inode also has the full sync flag set;
2) After the first fsync, we set inode 258 ->logged_trans to 6, which is
the generation of the current transaction, and set ->last_log_commit
to 0, which is the current value of ->last_sub_trans (done at
btrfs_log_inode()).
The full sync flag is cleared from the inode during the fsync.
The log sub transaction that was committed had an ID of 0 and when we
synced the log, at btrfs_sync_log(), we incremented root->log_transid
from 0 to 1;
3) During the rename:
We update inode 258, through btrfs_update_inode(), and that causes its
->last_sub_trans to be set to 1 (the current log transaction ID), and
->last_log_commit remains with a value of 0.
After updating inode 258, because we have previously logged the inode
in the previous fsync, we log again the inode through the call to
btrfs_log_new_name(). This results in updating the inode's
->last_log_commit from 0 to 1 (the current value of its
->last_sub_trans).
The ->last_sub_trans of inode 257 is updated to 1, which is the ID of
the next log transaction;
4) Then a buffered write against inode 258 is made. This leaves the value
of ->last_sub_trans as 1 (the ID of the current log transaction, stored
at root->log_transid);
5) Then an fsync against inode 257 (or any other inode other than 258),
happens. This results in committing the log transaction with ID 1,
which results in updating root->last_log_commit to 1 and bumping
root->log_transid from 1 to 2;
6) Then an fsync against inode 258 starts. We flush delalloc and wait only
for writeback to complete, since the full sync flag is not set in the
inode's runtime flags - we do not wait for ordered extents to complete.
Then, at btrfs_sync_file(), we call btrfs_inode_in_log() before the
ordered extent completes. The call returns true:
static inline bool btrfs_inode_in_log(...)
{
bool ret = false;
spin_lock(&inode->lock);
if (inode->logged_trans == generation &&
inode->last_sub_trans <= inode->last_log_commit &&
inode->last_sub_trans <= inode->root->last_log_commit)
ret = true;
spin_unlock(&inode->lock);
return ret;
}
generation has a value of 6 (fs_info->generation), ->logged_trans also
has a value of 6 (set when we logged the inode during the first fsync
and when logging it during the rename), ->last_sub_trans has a value
of 1, set during the rename (step 3), ->last_log_commit also has a
value of 1 (set in step 3) and root->last_log_commit has a value of 1,
which was set in step 5 when fsyncing inode 257.
As a consequence we don't log the inode, any new extents and do not
sync the log, resulting in a data loss if a power failure happens
after the fsync and before the current transaction commits.
Also, because we do not log the inode, after a power failure the mtime
and ctime of the inode do not match those we had before.
When the ordered extent completes before we call btrfs_inode_in_log(),
then the call returns false and we log the inode and sync the log,
since at the end of ordered extent completion we update the inode and
set ->last_sub_trans to 2 (the value of root->log_transid) and
->last_log_commit to 1.
This problem is found after removing the check for the emptiness of the
inode's list of modified extents in the recent commit
|
||
|
|
57fa2369ab |
Merge tag 'cfi-v5.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull CFI on arm64 support from Kees Cook: "This builds on last cycle's LTO work, and allows the arm64 kernels to be built with Clang's Control Flow Integrity feature. This feature has happily lived in Android kernels for almost 3 years[1], so I'm excited to have it ready for upstream. The wide diffstat is mainly due to the treewide fixing of mismatched list_sort prototypes. Other things in core kernel are to address various CFI corner cases. The largest code portion is the CFI runtime implementation itself (which will be shared by all architectures implementing support for CFI). The arm64 pieces are Acked by arm64 maintainers rather than coming through the arm64 tree since carrying this tree over there was going to be awkward. CFI support for x86 is still under development, but is pretty close. There are a handful of corner cases on x86 that need some improvements to Clang and objtool, but otherwise works well. Summary: - Clean up list_sort prototypes (Sami Tolvanen) - Introduce CONFIG_CFI_CLANG for arm64 (Sami Tolvanen)" * tag 'cfi-v5.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: arm64: allow CONFIG_CFI_CLANG to be selected KVM: arm64: Disable CFI for nVHE arm64: ftrace: use function_nocfi for ftrace_call arm64: add __nocfi to __apply_alternatives arm64: add __nocfi to functions that jump to a physical address arm64: use function_nocfi with __pa_symbol arm64: implement function_nocfi psci: use function_nocfi for cpu_resume lkdtm: use function_nocfi treewide: Change list_sort to use const pointers bpf: disable CFI in dispatcher functions kallsyms: strip ThinLTO hashes from static functions kthread: use WARN_ON_FUNCTION_MISMATCH workqueue: use WARN_ON_FUNCTION_MISMATCH module: ensure __cfi_check alignment mm: add generic function_nocfi macro cfi: add __cficanonical add support for Clang CFI |
||
|
|
2002ae112a |
btrfs: handle btrfs_record_root_in_trans failure in btrfs_recover_log_trees
btrfs_record_root_in_trans will return errors in the future, so handle the error properly in btrfs_recover_log_trees. This appears tricky, however we have a reference count on the destination root, so if this fails we need to continue on in the loop to make sure the proper cleanup is done. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add comment ] Signed-off-by: David Sterba <dsterba@suse.com> |