Files
kernel_arpi/kernel/dma/direct.c
Greg Kroah-Hartman 99387927eb Merge 5.15.51 into android14-5.15
Changes in 5.15.51
	random: schedule mix_interrupt_randomness() less often
	random: quiet urandom warning ratelimit suppression message
	ALSA: hda/via: Fix missing beep setup
	ALSA: hda/conexant: Fix missing beep setup
	ALSA: hda/realtek: Add mute LED quirk for HP Omen laptop
	ALSA: hda/realtek - ALC897 headset MIC no sound
	ALSA: hda/realtek: Apply fixup for Lenovo Yoga Duet 7 properly
	ALSA: hda/realtek: Add quirk for Clevo PD70PNT
	ALSA: hda/realtek: Add quirk for Clevo NS50PU
	net: openvswitch: fix parsing of nw_proto for IPv6 fragments
	9p: Fix refcounting during full path walks for fid lookups
	9p: fix fid refcount leak in v9fs_vfs_atomic_open_dotl
	9p: fix fid refcount leak in v9fs_vfs_get_link
	btrfs: fix hang during unmount when block group reclaim task is running
	btrfs: prevent remounting to v1 space cache for subpage mount
	btrfs: add error messages to all unrecognized mount options
	scsi: ibmvfc: Store vhost pointer during subcrq allocation
	scsi: ibmvfc: Allocate/free queue resource only during probe/remove
	mmc: sdhci-pci-o2micro: Fix card detect by dealing with debouncing
	mmc: mediatek: wait dma stop bit reset to 0
	xen/gntdev: Avoid blocking in unmap_grant_pages()
	MAINTAINERS: Add new IOMMU development mailing list
	mtd: rawnand: gpmi: Fix setting busy timeout setting
	ata: libata: add qc->flags in ata_qc_complete_template tracepoint
	dm era: commit metadata in postsuspend after worker stops
	dm mirror log: clear log bits up to BITS_PER_LONG boundary
	tracing/kprobes: Check whether get_kretprobe() returns NULL in kretprobe_dispatcher()
	drm/i915: Implement w/a 22010492432 for adl-s
	USB: serial: pl2303: add support for more HXN (G) types
	USB: serial: option: add Telit LE910Cx 0x1250 composition
	USB: serial: option: add Quectel EM05-G modem
	USB: serial: option: add Quectel RM500K module support
	drm/msm: Ensure mmap offset is initialized
	drm/msm: Fix double pm_runtime_disable() call
	netfilter: use get_random_u32 instead of prandom
	scsi: scsi_debug: Fix zone transition to full condition
	drm/msm: Switch ordering of runpm put vs devfreq_idle
	scsi: iscsi: Exclude zero from the endpoint ID range
	xsk: Fix generic transmit when completion queue reservation fails
	drm/msm: use for_each_sgtable_sg to iterate over scatterlist
	bpf: Fix request_sock leak in sk lookup helpers
	drm/sun4i: Fix crash during suspend after component bind failure
	bpf, x86: Fix tail call count offset calculation on bpf2bpf call
	scsi: storvsc: Correct reporting of Hyper-V I/O size limits
	phy: aquantia: Fix AN when higher speeds than 1G are not advertised
	KVM: arm64: Prevent kmemleak from accessing pKVM memory
	net: Write lock dev_base_lock without disabling bottom halves.
	net: fix data-race in dev_isalive()
	tipc: fix use-after-free Read in tipc_named_reinit
	igb: fix a use-after-free issue in igb_clean_tx_ring
	bonding: ARP monitor spams NETDEV_NOTIFY_PEERS notifiers
	ethtool: Fix get module eeprom fallback
	net/sched: sch_netem: Fix arithmetic in netem_dump() for 32-bit platforms
	drm/msm/mdp4: Fix refcount leak in mdp4_modeset_init_intf
	drm/msm/dp: check core_initialized before disable interrupts at dp_display_unbind()
	drm/msm/dp: Drop now unused hpd_high member
	drm/msm/dp: dp_link_parse_sink_count() return immediately if aux read failed
	drm/msm/dp: do not initialize phy until plugin interrupt received
	drm/msm/dp: force link training for display resolution change
	perf arm-spe: Don't set data source if it's not a memory operation
	erspan: do not assume transport header is always set
	net/tls: fix tls_sk_proto_close executed repeatedly
	udmabuf: add back sanity check
	selftests: netfilter: correct PKTGEN_SCRIPT_PATHS in nft_concat_range.sh
	xen-blkfront: Handle NULL gendisk
	x86/xen: Remove undefined behavior in setup_features()
	MIPS: Remove repetitive increase irq_err_count
	afs: Fix dynamic root getattr
	ice: ethtool: advertise 1000M speeds properly
	regmap-irq: Fix a bug in regmap_irq_enable() for type_in_mask chips
	regmap-irq: Fix offset/index mismatch in read_sub_irq_data()
	igb: Make DMA faster when CPU is active on the PCIe link
	virtio_net: fix xdp_rxq_info bug after suspend/resume
	Revert "net/tls: fix tls_sk_proto_close executed repeatedly"
	sock: redo the psock vs ULP protection check
	nvme-pci: add NO APST quirk for Kioxia device
	nvme: move the Samsung X5 quirk entry to the core quirks
	gpio: winbond: Fix error code in winbond_gpio_get()
	s390/cpumf: Handle events cycles and instructions identical
	iio: mma8452: fix probe fail when device tree compatible is used.
	iio: magnetometer: yas530: Fix memchr_inv() misuse
	iio: adc: vf610: fix conversion mode sysfs node name
	usb: typec: wcove: Drop wrong dependency to INTEL_SOC_PMIC
	xhci: turn off port power in shutdown
	xhci-pci: Allow host runtime PM as default for Intel Raptor Lake xHCI
	xhci-pci: Allow host runtime PM as default for Intel Meteor Lake xHCI
	usb: gadget: Fix non-unique driver names in raw-gadget driver
	USB: gadget: Fix double-free bug in raw_gadget driver
	usb: chipidea: udc: check request status before setting device address
	dt-bindings: usb: ohci: Increase the number of PHYs
	dt-bindings: usb: ehci: Increase the number of PHYs
	btrfs: don't set lock_owner when locking extent buffer for reading
	btrfs: fix deadlock with fsync+fiemap+transaction commit
	f2fs: attach inline_data after setting compression
	iio:humidity:hts221: rearrange iio trigger get and register
	iio:chemical:ccs811: rearrange iio trigger get and register
	iio:accel:kxcjk-1013: rearrange iio trigger get and register
	iio:accel:bma180: rearrange iio trigger get and register
	iio:accel:mxc4005: rearrange iio trigger get and register
	iio: accel: mma8452: ignore the return value of reset operation
	iio: gyro: mpu3050: Fix the error handling in mpu3050_power_up()
	iio: trigger: sysfs: fix use-after-free on remove
	iio: adc: stm32: fix maximum clock rate for stm32mp15x
	iio: imu: inv_icm42600: Fix broken icm42600 (chip id 0 value)
	iio: afe: rescale: Fix boolean logic bug
	iio: adc: stm32: Fix ADCs iteration in irq handler
	iio: adc: stm32: Fix IRQs on STM32F4 by removing custom spurious IRQs message
	iio: adc: axp288: Override TS pin bias current for some models
	iio: adc: rzg2l_adc: add missing fwnode_handle_put() in rzg2l_adc_parse_properties()
	iio: adc: adi-axi-adc: Fix refcount leak in adi_axi_adc_attach_client
	iio: adc: ti-ads131e08: add missing fwnode_handle_put() in ads131e08_alloc_channels()
	xtensa: xtfpga: Fix refcount leak bug in setup
	xtensa: Fix refcount leak bug in time.c
	parisc/stifb: Fix fb_is_primary_device() only available with CONFIG_FB_STI
	parisc: Enable ARCH_HAS_STRICT_MODULE_RWX
	powerpc/microwatt: wire up rng during setup_arch()
	powerpc: Enable execve syscall exit tracepoint
	powerpc/rtas: Allow ibm,platform-dump RTAS call with null buffer address
	powerpc/powernv: wire up rng during setup_arch
	drm/msm/dp: Always clear mask bits to disable interrupts at dp_ctrl_reset_irq_ctrl()
	ARM: dts: imx7: Move hsic_phy power domain to HSIC PHY node
	ARM: dts: imx6qdl: correct PU regulator ramp delay
	arm64: dts: ti: k3-am64-main: Remove support for HS400 speed mode
	ARM: exynos: Fix refcount leak in exynos_map_pmu
	soc: bcm: brcmstb: pm: pm-arm: Fix refcount leak in brcmstb_pm_probe
	ARM: Fix refcount leak in axxia_boot_secondary
	memory: samsung: exynos5422-dmc: Fix refcount leak in of_get_dram_timings
	ARM: cns3xxx: Fix refcount leak in cns3xxx_init
	modpost: fix section mismatch check for exported init/exit sections
	ARM: dts: bcm2711-rpi-400: Fix GPIO line names
	random: update comment from copy_to_user() -> copy_to_iter()
	perf build-id: Fix caching files with a wrong build ID
	dma-direct: use the correct size for dma_set_encrypted()
	kbuild: link vmlinux only once for CONFIG_TRIM_UNUSED_KSYMS (2nd attempt)
	powerpc/pseries: wire up rng during setup_arch()
	Linux 5.15.51

Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
Change-Id: Ic8819a78d2d84055e7a6d44bdfab6a6cd8296dac
2022-07-13 17:32:01 +02:00

594 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2018-2020 Christoph Hellwig.
*
* DMA operations that map physical memory directly without using an IOMMU.
*/
#include <linux/memblock.h> /* for max_pfn */
#include <linux/export.h>
#include <linux/mm.h>
#include <linux/dma-map-ops.h>
#include <linux/scatterlist.h>
#include <linux/pfn.h>
#include <linux/vmalloc.h>
#include <linux/set_memory.h>
#include <linux/slab.h>
#include "direct.h"
/*
* Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
* it for entirely different regions. In that case the arch code needs to
* override the variable below for dma-direct to work properly.
*/
unsigned int zone_dma_bits __ro_after_init = 24;
static inline dma_addr_t phys_to_dma_direct(struct device *dev,
phys_addr_t phys)
{
if (force_dma_unencrypted(dev))
return phys_to_dma_unencrypted(dev, phys);
return phys_to_dma(dev, phys);
}
static inline struct page *dma_direct_to_page(struct device *dev,
dma_addr_t dma_addr)
{
return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
}
u64 dma_direct_get_required_mask(struct device *dev)
{
phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
u64 max_dma = phys_to_dma_direct(dev, phys);
return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
}
static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
u64 *phys_limit)
{
u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
/*
* Optimistically try the zone that the physical address mask falls
* into first. If that returns memory that isn't actually addressable
* we will fallback to the next lower zone and try again.
*
* Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
* zones.
*/
*phys_limit = dma_to_phys(dev, dma_limit);
if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
return GFP_DMA;
if (*phys_limit <= DMA_BIT_MASK(32) &&
!zone_dma32_are_empty())
return GFP_DMA32;
return 0;
}
static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
{
dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
if (dma_addr == DMA_MAPPING_ERROR)
return false;
return dma_addr + size - 1 <=
min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
}
static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size)
{
if (!force_dma_unencrypted(dev))
return 0;
return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size));
}
static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size)
{
int ret;
if (!force_dma_unencrypted(dev))
return 0;
ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
if (ret)
pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n");
return ret;
}
static void __dma_direct_free_pages(struct device *dev, struct page *page,
size_t size)
{
if (IS_ENABLED(CONFIG_DMA_RESTRICTED_POOL) &&
swiotlb_free(dev, page, size))
return;
dma_free_contiguous(dev, page, size);
}
static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
gfp_t gfp, bool allow_highmem)
{
int node = dev_to_node(dev);
struct page *page = NULL;
u64 phys_limit;
WARN_ON_ONCE(!PAGE_ALIGNED(size));
gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
&phys_limit);
if (IS_ENABLED(CONFIG_DMA_RESTRICTED_POOL) &&
is_swiotlb_for_alloc(dev)) {
page = swiotlb_alloc(dev, size);
if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
__dma_direct_free_pages(dev, page, size);
return NULL;
}
return page;
}
page = dma_alloc_contiguous(dev, size, gfp);
if (page) {
if (!dma_coherent_ok(dev, page_to_phys(page), size) ||
(!allow_highmem && PageHighMem(page))) {
dma_free_contiguous(dev, page, size);
page = NULL;
}
}
again:
if (!page)
page = alloc_pages_node(node, gfp, get_order(size));
if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
dma_free_contiguous(dev, page, size);
page = NULL;
if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
phys_limit < DMA_BIT_MASK(64) &&
!(gfp & (GFP_DMA32 | GFP_DMA)) &&
!zone_dma32_are_empty()) {
gfp |= GFP_DMA32;
goto again;
}
if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
goto again;
}
}
return page;
}
static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp)
{
struct page *page;
u64 phys_mask;
void *ret;
gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
&phys_mask);
page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
if (!page)
return NULL;
*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
return ret;
}
static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp)
{
struct page *page;
page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
if (!page)
return NULL;
/* remove any dirty cache lines on the kernel alias */
if (!PageHighMem(page))
arch_dma_prep_coherent(page, size);
/* return the page pointer as the opaque cookie */
*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
return page;
}
void *dma_direct_alloc(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
{
struct page *page;
void *ret;
size = PAGE_ALIGN(size);
if (attrs & DMA_ATTR_NO_WARN)
gfp |= __GFP_NOWARN;
if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
!force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev))
return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp);
if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
!IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
!IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
!dev_is_dma_coherent(dev) &&
!is_swiotlb_for_alloc(dev))
return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
!dev_is_dma_coherent(dev))
return dma_alloc_from_global_coherent(dev, size, dma_handle);
/*
* Remapping or decrypting memory may block. If either is required and
* we can't block, allocate the memory from the atomic pools.
* If restricted DMA (i.e., is_swiotlb_for_alloc) is required, one must
* set up another device coherent pool by shared-dma-pool and use
* dma_alloc_from_dev_coherent instead.
*/
if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
!gfpflags_allow_blocking(gfp) &&
(force_dma_unencrypted(dev) ||
(IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
!dev_is_dma_coherent(dev))) &&
!is_swiotlb_for_alloc(dev))
return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
/* we always manually zero the memory once we are done */
page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
if (!page)
return NULL;
if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
!dev_is_dma_coherent(dev)) ||
(IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
/* remove any dirty cache lines on the kernel alias */
arch_dma_prep_coherent(page, size);
/* create a coherent mapping */
ret = dma_common_contiguous_remap(page, size,
dma_pgprot(dev, PAGE_KERNEL, attrs),
__builtin_return_address(0));
if (!ret)
goto out_free_pages;
memset(ret, 0, size);
goto done;
}
if (PageHighMem(page)) {
/*
* Depending on the cma= arguments and per-arch setup
* dma_alloc_contiguous could return highmem pages.
* Without remapping there is no way to return them here,
* so log an error and fail.
*/
dev_info(dev, "Rejecting highmem page from CMA.\n");
goto out_free_pages;
}
ret = page_address(page);
if (dma_set_decrypted(dev, ret, size))
goto out_free_pages;
memset(ret, 0, size);
if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
!dev_is_dma_coherent(dev)) {
arch_dma_prep_coherent(page, size);
ret = arch_dma_set_uncached(ret, size);
if (IS_ERR(ret))
goto out_encrypt_pages;
}
done:
*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
return ret;
out_encrypt_pages:
if (dma_set_encrypted(dev, page_address(page), size))
return NULL;
out_free_pages:
__dma_direct_free_pages(dev, page, size);
return NULL;
}
void dma_direct_free(struct device *dev, size_t size,
void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
{
unsigned int page_order = get_order(size);
if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
!force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
/* cpu_addr is a struct page cookie, not a kernel address */
dma_free_contiguous(dev, cpu_addr, size);
return;
}
if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
!IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
!IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
!dev_is_dma_coherent(dev) &&
!is_swiotlb_for_alloc(dev)) {
arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
return;
}
if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
!dev_is_dma_coherent(dev)) {
if (!dma_release_from_global_coherent(page_order, cpu_addr))
WARN_ON_ONCE(1);
return;
}
/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
return;
if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
vunmap(cpu_addr);
} else {
if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
arch_dma_clear_uncached(cpu_addr, size);
if (dma_set_encrypted(dev, cpu_addr, size))
return;
}
__dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
}
struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
{
struct page *page;
void *ret;
if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
force_dma_unencrypted(dev) && !gfpflags_allow_blocking(gfp) &&
!is_swiotlb_for_alloc(dev))
return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
page = __dma_direct_alloc_pages(dev, size, gfp, false);
if (!page)
return NULL;
ret = page_address(page);
if (dma_set_decrypted(dev, ret, size))
goto out_free_pages;
memset(ret, 0, size);
*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
return page;
out_free_pages:
__dma_direct_free_pages(dev, page, size);
return NULL;
}
void dma_direct_free_pages(struct device *dev, size_t size,
struct page *page, dma_addr_t dma_addr,
enum dma_data_direction dir)
{
void *vaddr = page_address(page);
/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
dma_free_from_pool(dev, vaddr, size))
return;
if (dma_set_encrypted(dev, vaddr, size))
return;
__dma_direct_free_pages(dev, page, size);
}
#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
defined(CONFIG_SWIOTLB)
void dma_direct_sync_sg_for_device(struct device *dev,
struct scatterlist *sgl, int nents, enum dma_data_direction dir)
{
struct scatterlist *sg;
int i;
for_each_sg(sgl, sg, nents, i) {
phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
if (unlikely(is_swiotlb_buffer(dev, paddr)))
swiotlb_sync_single_for_device(dev, paddr, sg->length,
dir);
if (!dev_is_dma_coherent(dev))
arch_sync_dma_for_device(paddr, sg->length,
dir);
}
}
#endif
#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
defined(CONFIG_SWIOTLB)
void dma_direct_sync_sg_for_cpu(struct device *dev,
struct scatterlist *sgl, int nents, enum dma_data_direction dir)
{
struct scatterlist *sg;
int i;
for_each_sg(sgl, sg, nents, i) {
phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
if (!dev_is_dma_coherent(dev))
arch_sync_dma_for_cpu(paddr, sg->length, dir);
if (unlikely(is_swiotlb_buffer(dev, paddr)))
swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
dir);
if (dir == DMA_FROM_DEVICE)
arch_dma_mark_clean(paddr, sg->length);
}
if (!dev_is_dma_coherent(dev))
arch_sync_dma_for_cpu_all();
}
void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
int nents, enum dma_data_direction dir, unsigned long attrs)
{
struct scatterlist *sg;
int i;
for_each_sg(sgl, sg, nents, i)
dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
attrs);
}
#endif
int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
enum dma_data_direction dir, unsigned long attrs)
{
int i;
struct scatterlist *sg;
for_each_sg(sgl, sg, nents, i) {
sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
sg->offset, sg->length, dir, attrs);
if (sg->dma_address == DMA_MAPPING_ERROR)
goto out_unmap;
sg_dma_len(sg) = sg->length;
}
return nents;
out_unmap:
dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
return -EIO;
}
dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
size_t size, enum dma_data_direction dir, unsigned long attrs)
{
dma_addr_t dma_addr = paddr;
if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
dev_err_once(dev,
"DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
&dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
WARN_ON_ONCE(1);
return DMA_MAPPING_ERROR;
}
return dma_addr;
}
int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
void *cpu_addr, dma_addr_t dma_addr, size_t size,
unsigned long attrs)
{
struct page *page = dma_direct_to_page(dev, dma_addr);
int ret;
ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
if (!ret)
sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
return ret;
}
bool dma_direct_can_mmap(struct device *dev)
{
return dev_is_dma_coherent(dev) ||
IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
}
int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
void *cpu_addr, dma_addr_t dma_addr, size_t size,
unsigned long attrs)
{
unsigned long user_count = vma_pages(vma);
unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
int ret = -ENXIO;
vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
return ret;
if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
return ret;
if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
return -ENXIO;
return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
user_count << PAGE_SHIFT, vma->vm_page_prot);
}
int dma_direct_supported(struct device *dev, u64 mask)
{
u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
/*
* Because 32-bit DMA masks are so common we expect every architecture
* to be able to satisfy them - either by not supporting more physical
* memory, or by providing a ZONE_DMA32. If neither is the case, the
* architecture needs to use an IOMMU instead of the direct mapping.
*/
if (mask >= DMA_BIT_MASK(32))
return 1;
/*
* This check needs to be against the actual bit mask value, so use
* phys_to_dma_unencrypted() here so that the SME encryption mask isn't
* part of the check.
*/
if (IS_ENABLED(CONFIG_ZONE_DMA))
min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
return mask >= phys_to_dma_unencrypted(dev, min_mask);
}
size_t dma_direct_max_mapping_size(struct device *dev)
{
/* If SWIOTLB is active, use its maximum mapping size */
if (is_swiotlb_active(dev) &&
(dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
return swiotlb_max_mapping_size(dev);
return SIZE_MAX;
}
bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
{
return !dev_is_dma_coherent(dev) ||
is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr));
}
/**
* dma_direct_set_offset - Assign scalar offset for a single DMA range.
* @dev: device pointer; needed to "own" the alloced memory.
* @cpu_start: beginning of memory region covered by this offset.
* @dma_start: beginning of DMA/PCI region covered by this offset.
* @size: size of the region.
*
* This is for the simple case of a uniform offset which cannot
* be discovered by "dma-ranges".
*
* It returns -ENOMEM if out of memory, -EINVAL if a map
* already exists, 0 otherwise.
*
* Note: any call to this from a driver is a bug. The mapping needs
* to be described by the device tree or other firmware interfaces.
*/
int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
dma_addr_t dma_start, u64 size)
{
struct bus_dma_region *map;
u64 offset = (u64)cpu_start - (u64)dma_start;
if (dev->dma_range_map) {
dev_err(dev, "attempt to add DMA range to existing map\n");
return -EINVAL;
}
if (!offset)
return 0;
map = kcalloc(2, sizeof(*map), GFP_KERNEL);
if (!map)
return -ENOMEM;
map[0].cpu_start = cpu_start;
map[0].dma_start = dma_start;
map[0].offset = offset;
map[0].size = size;
dev->dma_range_map = map;
return 0;
}