Files
kernel_arpi/arch/x86/kernel/cpu/mce/severity.c
Thomas Gleixner 3461326e1a x86/extable: Rework the exception table mechanics
[ Upstream commit 46d28947d9876fc0f8f93d3c69813ef6e9852595 ]

The exception table entries contain the instruction address, the fixup
address and the handler address. All addresses are relative. Storing the
handler address has a few downsides:

 1) Most handlers need to be exported

 2) Handlers can be defined everywhere and there is no overview about the
    handler types

 3) MCE needs to check the handler type to decide whether an in kernel #MC
    can be recovered. The functionality of the handler itself is not in any
    way special, but for these checks there need to be separate functions
    which in the worst case have to be exported.

    Some of these 'recoverable' exception fixups are pretty obscure and
    just reuse some other handler to spare code. That obfuscates e.g. the
    #MC safe copy functions. Cleaning that up would require more handlers
    and exports

Rework the exception fixup mechanics by storing a fixup type number instead
of the handler address and invoke the proper handler for each fixup
type. Also teach the extable sort to leave the type field alone.

This makes most handlers static except for special cases like the MCE
MSR fixup and the BPF fixup. This allows to add more types for cleaning up
the obscure places without adding more handler code and exports.

There is a marginal code size reduction for a production config and it
removes _eight_ exported symbols.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lkml.kernel.org/r/20210908132525.211958725@linutronix.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-07-29 17:25:25 +02:00

488 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* MCE grading rules.
* Copyright 2008, 2009 Intel Corporation.
*
* Author: Andi Kleen
*/
#include <linux/kernel.h>
#include <linux/seq_file.h>
#include <linux/init.h>
#include <linux/debugfs.h>
#include <linux/uaccess.h>
#include <asm/mce.h>
#include <asm/intel-family.h>
#include <asm/traps.h>
#include <asm/insn.h>
#include <asm/insn-eval.h>
#include "internal.h"
/*
* Grade an mce by severity. In general the most severe ones are processed
* first. Since there are quite a lot of combinations test the bits in a
* table-driven way. The rules are simply processed in order, first
* match wins.
*
* Note this is only used for machine check exceptions, the corrected
* errors use much simpler rules. The exceptions still check for the corrected
* errors, but only to leave them alone for the CMCI handler (except for
* panic situations)
*/
enum context { IN_KERNEL = 1, IN_USER = 2, IN_KERNEL_RECOV = 3 };
enum ser { SER_REQUIRED = 1, NO_SER = 2 };
enum exception { EXCP_CONTEXT = 1, NO_EXCP = 2 };
static struct severity {
u64 mask;
u64 result;
unsigned char sev;
unsigned char mcgmask;
unsigned char mcgres;
unsigned char ser;
unsigned char context;
unsigned char excp;
unsigned char covered;
unsigned char cpu_model;
unsigned char cpu_minstepping;
unsigned char bank_lo, bank_hi;
char *msg;
} severities[] = {
#define MCESEV(s, m, c...) { .sev = MCE_ ## s ## _SEVERITY, .msg = m, ## c }
#define BANK_RANGE(l, h) .bank_lo = l, .bank_hi = h
#define MODEL_STEPPING(m, s) .cpu_model = m, .cpu_minstepping = s
#define KERNEL .context = IN_KERNEL
#define USER .context = IN_USER
#define KERNEL_RECOV .context = IN_KERNEL_RECOV
#define SER .ser = SER_REQUIRED
#define NOSER .ser = NO_SER
#define EXCP .excp = EXCP_CONTEXT
#define NOEXCP .excp = NO_EXCP
#define BITCLR(x) .mask = x, .result = 0
#define BITSET(x) .mask = x, .result = x
#define MCGMASK(x, y) .mcgmask = x, .mcgres = y
#define MASK(x, y) .mask = x, .result = y
#define MCI_UC_S (MCI_STATUS_UC|MCI_STATUS_S)
#define MCI_UC_AR (MCI_STATUS_UC|MCI_STATUS_AR)
#define MCI_UC_SAR (MCI_STATUS_UC|MCI_STATUS_S|MCI_STATUS_AR)
#define MCI_ADDR (MCI_STATUS_ADDRV|MCI_STATUS_MISCV)
MCESEV(
NO, "Invalid",
BITCLR(MCI_STATUS_VAL)
),
MCESEV(
NO, "Not enabled",
EXCP, BITCLR(MCI_STATUS_EN)
),
MCESEV(
PANIC, "Processor context corrupt",
BITSET(MCI_STATUS_PCC)
),
/* When MCIP is not set something is very confused */
MCESEV(
PANIC, "MCIP not set in MCA handler",
EXCP, MCGMASK(MCG_STATUS_MCIP, 0)
),
/* Neither return not error IP -- no chance to recover -> PANIC */
MCESEV(
PANIC, "Neither restart nor error IP",
EXCP, MCGMASK(MCG_STATUS_RIPV|MCG_STATUS_EIPV, 0)
),
MCESEV(
PANIC, "In kernel and no restart IP",
EXCP, KERNEL, MCGMASK(MCG_STATUS_RIPV, 0)
),
MCESEV(
PANIC, "In kernel and no restart IP",
EXCP, KERNEL_RECOV, MCGMASK(MCG_STATUS_RIPV, 0)
),
MCESEV(
KEEP, "Corrected error",
NOSER, BITCLR(MCI_STATUS_UC)
),
/*
* known AO MCACODs reported via MCE or CMC:
*
* SRAO could be signaled either via a machine check exception or
* CMCI with the corresponding bit S 1 or 0. So we don't need to
* check bit S for SRAO.
*/
MCESEV(
AO, "Action optional: memory scrubbing error",
SER, MASK(MCI_UC_AR|MCACOD_SCRUBMSK, MCI_STATUS_UC|MCACOD_SCRUB)
),
MCESEV(
AO, "Action optional: last level cache writeback error",
SER, MASK(MCI_UC_AR|MCACOD, MCI_STATUS_UC|MCACOD_L3WB)
),
/*
* Quirk for Skylake/Cascade Lake. Patrol scrubber may be configured
* to report uncorrected errors using CMCI with a special signature.
* UC=0, MSCOD=0x0010, MCACOD=binary(000X 0000 1100 XXXX) reported
* in one of the memory controller banks.
* Set severity to "AO" for same action as normal patrol scrub error.
*/
MCESEV(
AO, "Uncorrected Patrol Scrub Error",
SER, MASK(MCI_STATUS_UC|MCI_ADDR|0xffffeff0, MCI_ADDR|0x001000c0),
MODEL_STEPPING(INTEL_FAM6_SKYLAKE_X, 4), BANK_RANGE(13, 18)
),
/* ignore OVER for UCNA */
MCESEV(
UCNA, "Uncorrected no action required",
SER, MASK(MCI_UC_SAR, MCI_STATUS_UC)
),
MCESEV(
PANIC, "Illegal combination (UCNA with AR=1)",
SER,
MASK(MCI_STATUS_OVER|MCI_UC_SAR, MCI_STATUS_UC|MCI_STATUS_AR)
),
MCESEV(
KEEP, "Non signaled machine check",
SER, BITCLR(MCI_STATUS_S)
),
MCESEV(
PANIC, "Action required with lost events",
SER, BITSET(MCI_STATUS_OVER|MCI_UC_SAR)
),
/* known AR MCACODs: */
#ifdef CONFIG_MEMORY_FAILURE
MCESEV(
KEEP, "Action required but unaffected thread is continuable",
SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR|MCI_ADDR, MCI_UC_SAR|MCI_ADDR),
MCGMASK(MCG_STATUS_RIPV|MCG_STATUS_EIPV, MCG_STATUS_RIPV)
),
MCESEV(
AR, "Action required: data load in error recoverable area of kernel",
SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR|MCI_ADDR|MCACOD, MCI_UC_SAR|MCI_ADDR|MCACOD_DATA),
KERNEL_RECOV
),
MCESEV(
AR, "Action required: data load error in a user process",
SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR|MCI_ADDR|MCACOD, MCI_UC_SAR|MCI_ADDR|MCACOD_DATA),
USER
),
MCESEV(
AR, "Action required: instruction fetch error in a user process",
SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR|MCI_ADDR|MCACOD, MCI_UC_SAR|MCI_ADDR|MCACOD_INSTR),
USER
),
MCESEV(
PANIC, "Data load in unrecoverable area of kernel",
SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR|MCI_ADDR|MCACOD, MCI_UC_SAR|MCI_ADDR|MCACOD_DATA),
KERNEL
),
MCESEV(
PANIC, "Instruction fetch error in kernel",
SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR|MCI_ADDR|MCACOD, MCI_UC_SAR|MCI_ADDR|MCACOD_INSTR),
KERNEL
),
#endif
MCESEV(
PANIC, "Action required: unknown MCACOD",
SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR, MCI_UC_SAR)
),
MCESEV(
SOME, "Action optional: unknown MCACOD",
SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR, MCI_UC_S)
),
MCESEV(
SOME, "Action optional with lost events",
SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR, MCI_STATUS_OVER|MCI_UC_S)
),
MCESEV(
PANIC, "Overflowed uncorrected",
BITSET(MCI_STATUS_OVER|MCI_STATUS_UC)
),
MCESEV(
UC, "Uncorrected",
BITSET(MCI_STATUS_UC)
),
MCESEV(
SOME, "No match",
BITSET(0)
) /* always matches. keep at end */
};
#define mc_recoverable(mcg) (((mcg) & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) == \
(MCG_STATUS_RIPV|MCG_STATUS_EIPV))
static bool is_copy_from_user(struct pt_regs *regs)
{
u8 insn_buf[MAX_INSN_SIZE];
unsigned long addr;
struct insn insn;
int ret;
if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip, MAX_INSN_SIZE))
return false;
ret = insn_decode_kernel(&insn, insn_buf);
if (ret < 0)
return false;
switch (insn.opcode.value) {
/* MOV mem,reg */
case 0x8A: case 0x8B:
/* MOVZ mem,reg */
case 0xB60F: case 0xB70F:
addr = (unsigned long)insn_get_addr_ref(&insn, regs);
break;
/* REP MOVS */
case 0xA4: case 0xA5:
addr = regs->si;
break;
default:
return false;
}
if (fault_in_kernel_space(addr))
return false;
current->mce_vaddr = (void __user *)addr;
return true;
}
/*
* If mcgstatus indicated that ip/cs on the stack were
* no good, then "m->cs" will be zero and we will have
* to assume the worst case (IN_KERNEL) as we actually
* have no idea what we were executing when the machine
* check hit.
* If we do have a good "m->cs" (or a faked one in the
* case we were executing in VM86 mode) we can use it to
* distinguish an exception taken in user from from one
* taken in the kernel.
*/
static int error_context(struct mce *m, struct pt_regs *regs)
{
if ((m->cs & 3) == 3)
return IN_USER;
if (!mc_recoverable(m->mcgstatus))
return IN_KERNEL;
switch (ex_get_fixup_type(m->ip)) {
case EX_TYPE_UACCESS:
case EX_TYPE_COPY:
if (!regs || !is_copy_from_user(regs))
return IN_KERNEL;
m->kflags |= MCE_IN_KERNEL_COPYIN;
fallthrough;
case EX_TYPE_FAULT:
m->kflags |= MCE_IN_KERNEL_RECOV;
return IN_KERNEL_RECOV;
default:
return IN_KERNEL;
}
}
static int mce_severity_amd_smca(struct mce *m, enum context err_ctx)
{
u32 addr = MSR_AMD64_SMCA_MCx_CONFIG(m->bank);
u32 low, high;
/*
* We need to look at the following bits:
* - "succor" bit (data poisoning support), and
* - TCC bit (Task Context Corrupt)
* in MCi_STATUS to determine error severity.
*/
if (!mce_flags.succor)
return MCE_PANIC_SEVERITY;
if (rdmsr_safe(addr, &low, &high))
return MCE_PANIC_SEVERITY;
/* TCC (Task context corrupt). If set and if IN_KERNEL, panic. */
if ((low & MCI_CONFIG_MCAX) &&
(m->status & MCI_STATUS_TCC) &&
(err_ctx == IN_KERNEL))
return MCE_PANIC_SEVERITY;
/* ...otherwise invoke hwpoison handler. */
return MCE_AR_SEVERITY;
}
/*
* See AMD Error Scope Hierarchy table in a newer BKDG. For example
* 49125_15h_Models_30h-3Fh_BKDG.pdf, section "RAS Features"
*/
static int mce_severity_amd(struct mce *m, struct pt_regs *regs, int tolerant,
char **msg, bool is_excp)
{
enum context ctx = error_context(m, regs);
/* Processor Context Corrupt, no need to fumble too much, die! */
if (m->status & MCI_STATUS_PCC)
return MCE_PANIC_SEVERITY;
if (m->status & MCI_STATUS_UC) {
if (ctx == IN_KERNEL)
return MCE_PANIC_SEVERITY;
/*
* On older systems where overflow_recov flag is not present, we
* should simply panic if an error overflow occurs. If
* overflow_recov flag is present and set, then software can try
* to at least kill process to prolong system operation.
*/
if (mce_flags.overflow_recov) {
if (mce_flags.smca)
return mce_severity_amd_smca(m, ctx);
/* kill current process */
return MCE_AR_SEVERITY;
} else {
/* at least one error was not logged */
if (m->status & MCI_STATUS_OVER)
return MCE_PANIC_SEVERITY;
}
/*
* For any other case, return MCE_UC_SEVERITY so that we log the
* error and exit #MC handler.
*/
return MCE_UC_SEVERITY;
}
/*
* deferred error: poll handler catches these and adds to mce_ring so
* memory-failure can take recovery actions.
*/
if (m->status & MCI_STATUS_DEFERRED)
return MCE_DEFERRED_SEVERITY;
/*
* corrected error: poll handler catches these and passes responsibility
* of decoding the error to EDAC
*/
return MCE_KEEP_SEVERITY;
}
static int mce_severity_intel(struct mce *m, struct pt_regs *regs,
int tolerant, char **msg, bool is_excp)
{
enum exception excp = (is_excp ? EXCP_CONTEXT : NO_EXCP);
enum context ctx = error_context(m, regs);
struct severity *s;
for (s = severities;; s++) {
if ((m->status & s->mask) != s->result)
continue;
if ((m->mcgstatus & s->mcgmask) != s->mcgres)
continue;
if (s->ser == SER_REQUIRED && !mca_cfg.ser)
continue;
if (s->ser == NO_SER && mca_cfg.ser)
continue;
if (s->context && ctx != s->context)
continue;
if (s->excp && excp != s->excp)
continue;
if (s->cpu_model && boot_cpu_data.x86_model != s->cpu_model)
continue;
if (s->cpu_minstepping && boot_cpu_data.x86_stepping < s->cpu_minstepping)
continue;
if (s->bank_lo && (m->bank < s->bank_lo || m->bank > s->bank_hi))
continue;
if (msg)
*msg = s->msg;
s->covered = 1;
if (s->sev >= MCE_UC_SEVERITY && ctx == IN_KERNEL) {
if (tolerant < 1)
return MCE_PANIC_SEVERITY;
}
return s->sev;
}
}
/* Default to mce_severity_intel */
int (*mce_severity)(struct mce *m, struct pt_regs *regs, int tolerant, char **msg, bool is_excp) =
mce_severity_intel;
void __init mcheck_vendor_init_severity(void)
{
if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
mce_severity = mce_severity_amd;
}
#ifdef CONFIG_DEBUG_FS
static void *s_start(struct seq_file *f, loff_t *pos)
{
if (*pos >= ARRAY_SIZE(severities))
return NULL;
return &severities[*pos];
}
static void *s_next(struct seq_file *f, void *data, loff_t *pos)
{
if (++(*pos) >= ARRAY_SIZE(severities))
return NULL;
return &severities[*pos];
}
static void s_stop(struct seq_file *f, void *data)
{
}
static int s_show(struct seq_file *f, void *data)
{
struct severity *ser = data;
seq_printf(f, "%d\t%s\n", ser->covered, ser->msg);
return 0;
}
static const struct seq_operations severities_seq_ops = {
.start = s_start,
.next = s_next,
.stop = s_stop,
.show = s_show,
};
static int severities_coverage_open(struct inode *inode, struct file *file)
{
return seq_open(file, &severities_seq_ops);
}
static ssize_t severities_coverage_write(struct file *file,
const char __user *ubuf,
size_t count, loff_t *ppos)
{
int i;
for (i = 0; i < ARRAY_SIZE(severities); i++)
severities[i].covered = 0;
return count;
}
static const struct file_operations severities_coverage_fops = {
.open = severities_coverage_open,
.release = seq_release,
.read = seq_read,
.write = severities_coverage_write,
.llseek = seq_lseek,
};
static int __init severities_debugfs_init(void)
{
struct dentry *dmce;
dmce = mce_get_debugfs_dir();
debugfs_create_file("severities-coverage", 0444, dmce, NULL,
&severities_coverage_fops);
return 0;
}
late_initcall(severities_debugfs_init);
#endif /* CONFIG_DEBUG_FS */