[ Upstream commit 7b72c823ddf8aaaec4e9fb28e6fbe4d511e7dad1 ]
commit 8795359e35bc ("x86/sgx: Silence softlockup detection when
releasing large enclaves") introduced a cond_resched() during enclave
release where the EREMOVE instruction is applied to every 4k enclave
page. Giving other tasks an opportunity to run while tearing down a
large enclave placates the soft lockup detector but Iqbal found
that the fix causes a 25% performance degradation of a workload
run using Gramine.
Gramine maintains a 1:1 mapping between processes and SGX enclaves.
That means if a workload in an enclave creates a subprocess then
Gramine creates a duplicate enclave for that subprocess to run in.
The consequence is that the release of the enclave used to run
the subprocess can impact the performance of the workload that is
run in the original enclave, especially in large enclaves when
SGX2 is not in use.
The workload run by Iqbal behaves as follows:
Create enclave (enclave "A")
/* Initialize workload in enclave "A" */
Create enclave (enclave "B")
/* Run subprocess in enclave "B" and send result to enclave "A" */
Release enclave (enclave "B")
/* Run workload in enclave "A" */
Release enclave (enclave "A")
The performance impact of releasing enclave "B" in the above scenario
is amplified when there is a lot of SGX memory and the enclave size
matches the SGX memory. When there is 128GB SGX memory and an enclave
size of 128GB, from the time enclave "B" starts the 128GB SGX memory
is oversubscribed with a combined demand for 256GB from the two
enclaves.
Before commit 8795359e35bc ("x86/sgx: Silence softlockup detection when
releasing large enclaves") enclave release was done in a tight loop
without giving other tasks a chance to run. Even though the system
experienced soft lockups the workload (run in enclave "A") obtained
good performance numbers because when the workload started running
there was no interference.
Commit 8795359e35bc ("x86/sgx: Silence softlockup detection when
releasing large enclaves") gave other tasks opportunity to run while an
enclave is released. The impact of this in this scenario is that while
enclave "B" is released and needing to access each page that belongs
to it in order to run the SGX EREMOVE instruction on it, enclave "A"
is attempting to run the workload needing to access the enclave
pages that belong to it. This causes a lot of swapping due to the
demand for the oversubscribed SGX memory. Longer latencies are
experienced by the workload in enclave "A" while enclave "B" is
released.
Improve the performance of enclave release while still avoiding the
soft lockup detector with two enhancements:
- Only call cond_resched() after XA_CHECK_SCHED iterations.
- Use the xarray advanced API to keep the xarray locked for
XA_CHECK_SCHED iterations instead of locking and unlocking
at every iteration.
This batching solution is copied from sgx_encl_may_map() that
also iterates through all enclave pages using this technique.
With this enhancement the workload experiences a 5%
performance degradation when compared to a kernel without
commit 8795359e35bc ("x86/sgx: Silence softlockup detection when
releasing large enclaves"), an improvement to the reported 25%
degradation, while still placating the soft lockup detector.
Scenarios with poor performance are still possible even with these
enhancements. For example, short workloads creating sub processes
while running in large enclaves. Further performance improvements
are pursued in user space through avoiding to create duplicate enclaves
for certain sub processes, and using SGX2 that will do lazy allocation
of pages as needed so enclaves created for sub processes start quickly
and release quickly.
Fixes: 8795359e35bc ("x86/sgx: Silence softlockup detection when releasing large enclaves")
Reported-by: Md Iqbal Hossain <md.iqbal.hossain@intel.com>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Tested-by: Md Iqbal Hossain <md.iqbal.hossain@intel.com>
Link: https://lore.kernel.org/all/00efa80dd9e35dc85753e1c5edb0344ac07bb1f0.1667236485.git.reinette.chatre%40intel.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
1011 lines
26 KiB
C
1011 lines
26 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright(c) 2016-20 Intel Corporation. */
|
|
|
|
#include <linux/lockdep.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/shmem_fs.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <asm/sgx.h>
|
|
#include "encl.h"
|
|
#include "encls.h"
|
|
#include "sgx.h"
|
|
|
|
#define PCMDS_PER_PAGE (PAGE_SIZE / sizeof(struct sgx_pcmd))
|
|
/*
|
|
* 32 PCMD entries share a PCMD page. PCMD_FIRST_MASK is used to
|
|
* determine the page index associated with the first PCMD entry
|
|
* within a PCMD page.
|
|
*/
|
|
#define PCMD_FIRST_MASK GENMASK(4, 0)
|
|
|
|
/**
|
|
* reclaimer_writing_to_pcmd() - Query if any enclave page associated with
|
|
* a PCMD page is in process of being reclaimed.
|
|
* @encl: Enclave to which PCMD page belongs
|
|
* @start_addr: Address of enclave page using first entry within the PCMD page
|
|
*
|
|
* When an enclave page is reclaimed some Paging Crypto MetaData (PCMD) is
|
|
* stored. The PCMD data of a reclaimed enclave page contains enough
|
|
* information for the processor to verify the page at the time
|
|
* it is loaded back into the Enclave Page Cache (EPC).
|
|
*
|
|
* The backing storage to which enclave pages are reclaimed is laid out as
|
|
* follows:
|
|
* Encrypted enclave pages:SECS page:PCMD pages
|
|
*
|
|
* Each PCMD page contains the PCMD metadata of
|
|
* PAGE_SIZE/sizeof(struct sgx_pcmd) enclave pages.
|
|
*
|
|
* A PCMD page can only be truncated if it is (a) empty, and (b) not in the
|
|
* process of getting data (and thus soon being non-empty). (b) is tested with
|
|
* a check if an enclave page sharing the PCMD page is in the process of being
|
|
* reclaimed.
|
|
*
|
|
* The reclaimer sets the SGX_ENCL_PAGE_BEING_RECLAIMED flag when it
|
|
* intends to reclaim that enclave page - it means that the PCMD page
|
|
* associated with that enclave page is about to get some data and thus
|
|
* even if the PCMD page is empty, it should not be truncated.
|
|
*
|
|
* Context: Enclave mutex (&sgx_encl->lock) must be held.
|
|
* Return: 1 if the reclaimer is about to write to the PCMD page
|
|
* 0 if the reclaimer has no intention to write to the PCMD page
|
|
*/
|
|
static int reclaimer_writing_to_pcmd(struct sgx_encl *encl,
|
|
unsigned long start_addr)
|
|
{
|
|
int reclaimed = 0;
|
|
int i;
|
|
|
|
/*
|
|
* PCMD_FIRST_MASK is based on number of PCMD entries within
|
|
* PCMD page being 32.
|
|
*/
|
|
BUILD_BUG_ON(PCMDS_PER_PAGE != 32);
|
|
|
|
for (i = 0; i < PCMDS_PER_PAGE; i++) {
|
|
struct sgx_encl_page *entry;
|
|
unsigned long addr;
|
|
|
|
addr = start_addr + i * PAGE_SIZE;
|
|
|
|
/*
|
|
* Stop when reaching the SECS page - it does not
|
|
* have a page_array entry and its reclaim is
|
|
* started and completed with enclave mutex held so
|
|
* it does not use the SGX_ENCL_PAGE_BEING_RECLAIMED
|
|
* flag.
|
|
*/
|
|
if (addr == encl->base + encl->size)
|
|
break;
|
|
|
|
entry = xa_load(&encl->page_array, PFN_DOWN(addr));
|
|
if (!entry)
|
|
continue;
|
|
|
|
/*
|
|
* VA page slot ID uses same bit as the flag so it is important
|
|
* to ensure that the page is not already in backing store.
|
|
*/
|
|
if (entry->epc_page &&
|
|
(entry->desc & SGX_ENCL_PAGE_BEING_RECLAIMED)) {
|
|
reclaimed = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return reclaimed;
|
|
}
|
|
|
|
/*
|
|
* Calculate byte offset of a PCMD struct associated with an enclave page. PCMD's
|
|
* follow right after the EPC data in the backing storage. In addition to the
|
|
* visible enclave pages, there's one extra page slot for SECS, before PCMD
|
|
* structs.
|
|
*/
|
|
static inline pgoff_t sgx_encl_get_backing_page_pcmd_offset(struct sgx_encl *encl,
|
|
unsigned long page_index)
|
|
{
|
|
pgoff_t epc_end_off = encl->size + sizeof(struct sgx_secs);
|
|
|
|
return epc_end_off + page_index * sizeof(struct sgx_pcmd);
|
|
}
|
|
|
|
/*
|
|
* Free a page from the backing storage in the given page index.
|
|
*/
|
|
static inline void sgx_encl_truncate_backing_page(struct sgx_encl *encl, unsigned long page_index)
|
|
{
|
|
struct inode *inode = file_inode(encl->backing);
|
|
|
|
shmem_truncate_range(inode, PFN_PHYS(page_index), PFN_PHYS(page_index) + PAGE_SIZE - 1);
|
|
}
|
|
|
|
/*
|
|
* ELDU: Load an EPC page as unblocked. For more info, see "OS Management of EPC
|
|
* Pages" in the SDM.
|
|
*/
|
|
static int __sgx_encl_eldu(struct sgx_encl_page *encl_page,
|
|
struct sgx_epc_page *epc_page,
|
|
struct sgx_epc_page *secs_page)
|
|
{
|
|
unsigned long va_offset = encl_page->desc & SGX_ENCL_PAGE_VA_OFFSET_MASK;
|
|
struct sgx_encl *encl = encl_page->encl;
|
|
pgoff_t page_index, page_pcmd_off;
|
|
unsigned long pcmd_first_page;
|
|
struct sgx_pageinfo pginfo;
|
|
struct sgx_backing b;
|
|
bool pcmd_page_empty;
|
|
u8 *pcmd_page;
|
|
int ret;
|
|
|
|
if (secs_page)
|
|
page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base);
|
|
else
|
|
page_index = PFN_DOWN(encl->size);
|
|
|
|
/*
|
|
* Address of enclave page using the first entry within the PCMD page.
|
|
*/
|
|
pcmd_first_page = PFN_PHYS(page_index & ~PCMD_FIRST_MASK) + encl->base;
|
|
|
|
page_pcmd_off = sgx_encl_get_backing_page_pcmd_offset(encl, page_index);
|
|
|
|
ret = sgx_encl_lookup_backing(encl, page_index, &b);
|
|
if (ret)
|
|
return ret;
|
|
|
|
pginfo.addr = encl_page->desc & PAGE_MASK;
|
|
pginfo.contents = (unsigned long)kmap_atomic(b.contents);
|
|
pcmd_page = kmap_atomic(b.pcmd);
|
|
pginfo.metadata = (unsigned long)pcmd_page + b.pcmd_offset;
|
|
|
|
if (secs_page)
|
|
pginfo.secs = (u64)sgx_get_epc_virt_addr(secs_page);
|
|
else
|
|
pginfo.secs = 0;
|
|
|
|
ret = __eldu(&pginfo, sgx_get_epc_virt_addr(epc_page),
|
|
sgx_get_epc_virt_addr(encl_page->va_page->epc_page) + va_offset);
|
|
if (ret) {
|
|
if (encls_failed(ret))
|
|
ENCLS_WARN(ret, "ELDU");
|
|
|
|
ret = -EFAULT;
|
|
}
|
|
|
|
memset(pcmd_page + b.pcmd_offset, 0, sizeof(struct sgx_pcmd));
|
|
set_page_dirty(b.pcmd);
|
|
|
|
/*
|
|
* The area for the PCMD in the page was zeroed above. Check if the
|
|
* whole page is now empty meaning that all PCMD's have been zeroed:
|
|
*/
|
|
pcmd_page_empty = !memchr_inv(pcmd_page, 0, PAGE_SIZE);
|
|
|
|
kunmap_atomic(pcmd_page);
|
|
kunmap_atomic((void *)(unsigned long)pginfo.contents);
|
|
|
|
get_page(b.pcmd);
|
|
sgx_encl_put_backing(&b);
|
|
|
|
sgx_encl_truncate_backing_page(encl, page_index);
|
|
|
|
if (pcmd_page_empty && !reclaimer_writing_to_pcmd(encl, pcmd_first_page)) {
|
|
sgx_encl_truncate_backing_page(encl, PFN_DOWN(page_pcmd_off));
|
|
pcmd_page = kmap_atomic(b.pcmd);
|
|
if (memchr_inv(pcmd_page, 0, PAGE_SIZE))
|
|
pr_warn("PCMD page not empty after truncate.\n");
|
|
kunmap_atomic(pcmd_page);
|
|
}
|
|
|
|
put_page(b.pcmd);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct sgx_epc_page *sgx_encl_eldu(struct sgx_encl_page *encl_page,
|
|
struct sgx_epc_page *secs_page)
|
|
{
|
|
|
|
unsigned long va_offset = encl_page->desc & SGX_ENCL_PAGE_VA_OFFSET_MASK;
|
|
struct sgx_encl *encl = encl_page->encl;
|
|
struct sgx_epc_page *epc_page;
|
|
int ret;
|
|
|
|
epc_page = sgx_alloc_epc_page(encl_page, false);
|
|
if (IS_ERR(epc_page))
|
|
return epc_page;
|
|
|
|
ret = __sgx_encl_eldu(encl_page, epc_page, secs_page);
|
|
if (ret) {
|
|
sgx_encl_free_epc_page(epc_page);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
sgx_free_va_slot(encl_page->va_page, va_offset);
|
|
list_move(&encl_page->va_page->list, &encl->va_pages);
|
|
encl_page->desc &= ~SGX_ENCL_PAGE_VA_OFFSET_MASK;
|
|
encl_page->epc_page = epc_page;
|
|
|
|
return epc_page;
|
|
}
|
|
|
|
static struct sgx_encl_page *sgx_encl_load_page(struct sgx_encl *encl,
|
|
unsigned long addr,
|
|
unsigned long vm_flags)
|
|
{
|
|
unsigned long vm_prot_bits = vm_flags & (VM_READ | VM_WRITE | VM_EXEC);
|
|
struct sgx_epc_page *epc_page;
|
|
struct sgx_encl_page *entry;
|
|
|
|
entry = xa_load(&encl->page_array, PFN_DOWN(addr));
|
|
if (!entry)
|
|
return ERR_PTR(-EFAULT);
|
|
|
|
/*
|
|
* Verify that the faulted page has equal or higher build time
|
|
* permissions than the VMA permissions (i.e. the subset of {VM_READ,
|
|
* VM_WRITE, VM_EXECUTE} in vma->vm_flags).
|
|
*/
|
|
if ((entry->vm_max_prot_bits & vm_prot_bits) != vm_prot_bits)
|
|
return ERR_PTR(-EFAULT);
|
|
|
|
/* Entry successfully located. */
|
|
if (entry->epc_page) {
|
|
if (entry->desc & SGX_ENCL_PAGE_BEING_RECLAIMED)
|
|
return ERR_PTR(-EBUSY);
|
|
|
|
return entry;
|
|
}
|
|
|
|
if (!(encl->secs.epc_page)) {
|
|
epc_page = sgx_encl_eldu(&encl->secs, NULL);
|
|
if (IS_ERR(epc_page))
|
|
return ERR_CAST(epc_page);
|
|
}
|
|
|
|
epc_page = sgx_encl_eldu(entry, encl->secs.epc_page);
|
|
if (IS_ERR(epc_page))
|
|
return ERR_CAST(epc_page);
|
|
|
|
encl->secs_child_cnt++;
|
|
sgx_mark_page_reclaimable(entry->epc_page);
|
|
|
|
return entry;
|
|
}
|
|
|
|
static vm_fault_t sgx_vma_fault(struct vm_fault *vmf)
|
|
{
|
|
unsigned long addr = (unsigned long)vmf->address;
|
|
struct vm_area_struct *vma = vmf->vma;
|
|
struct sgx_encl_page *entry;
|
|
unsigned long phys_addr;
|
|
struct sgx_encl *encl;
|
|
vm_fault_t ret;
|
|
|
|
encl = vma->vm_private_data;
|
|
|
|
/*
|
|
* It's very unlikely but possible that allocating memory for the
|
|
* mm_list entry of a forked process failed in sgx_vma_open(). When
|
|
* this happens, vm_private_data is set to NULL.
|
|
*/
|
|
if (unlikely(!encl))
|
|
return VM_FAULT_SIGBUS;
|
|
|
|
mutex_lock(&encl->lock);
|
|
|
|
entry = sgx_encl_load_page(encl, addr, vma->vm_flags);
|
|
if (IS_ERR(entry)) {
|
|
mutex_unlock(&encl->lock);
|
|
|
|
if (PTR_ERR(entry) == -EBUSY)
|
|
return VM_FAULT_NOPAGE;
|
|
|
|
return VM_FAULT_SIGBUS;
|
|
}
|
|
|
|
phys_addr = sgx_get_epc_phys_addr(entry->epc_page);
|
|
|
|
ret = vmf_insert_pfn(vma, addr, PFN_DOWN(phys_addr));
|
|
if (ret != VM_FAULT_NOPAGE) {
|
|
mutex_unlock(&encl->lock);
|
|
|
|
return VM_FAULT_SIGBUS;
|
|
}
|
|
|
|
sgx_encl_test_and_clear_young(vma->vm_mm, entry);
|
|
mutex_unlock(&encl->lock);
|
|
|
|
return VM_FAULT_NOPAGE;
|
|
}
|
|
|
|
static void sgx_vma_open(struct vm_area_struct *vma)
|
|
{
|
|
struct sgx_encl *encl = vma->vm_private_data;
|
|
|
|
/*
|
|
* It's possible but unlikely that vm_private_data is NULL. This can
|
|
* happen in a grandchild of a process, when sgx_encl_mm_add() had
|
|
* failed to allocate memory in this callback.
|
|
*/
|
|
if (unlikely(!encl))
|
|
return;
|
|
|
|
if (sgx_encl_mm_add(encl, vma->vm_mm))
|
|
vma->vm_private_data = NULL;
|
|
}
|
|
|
|
|
|
/**
|
|
* sgx_encl_may_map() - Check if a requested VMA mapping is allowed
|
|
* @encl: an enclave pointer
|
|
* @start: lower bound of the address range, inclusive
|
|
* @end: upper bound of the address range, exclusive
|
|
* @vm_flags: VMA flags
|
|
*
|
|
* Iterate through the enclave pages contained within [@start, @end) to verify
|
|
* that the permissions requested by a subset of {VM_READ, VM_WRITE, VM_EXEC}
|
|
* do not contain any permissions that are not contained in the build time
|
|
* permissions of any of the enclave pages within the given address range.
|
|
*
|
|
* An enclave creator must declare the strongest permissions that will be
|
|
* needed for each enclave page. This ensures that mappings have the identical
|
|
* or weaker permissions than the earlier declared permissions.
|
|
*
|
|
* Return: 0 on success, -EACCES otherwise
|
|
*/
|
|
int sgx_encl_may_map(struct sgx_encl *encl, unsigned long start,
|
|
unsigned long end, unsigned long vm_flags)
|
|
{
|
|
unsigned long vm_prot_bits = vm_flags & (VM_READ | VM_WRITE | VM_EXEC);
|
|
struct sgx_encl_page *page;
|
|
unsigned long count = 0;
|
|
int ret = 0;
|
|
|
|
XA_STATE(xas, &encl->page_array, PFN_DOWN(start));
|
|
|
|
/*
|
|
* Disallow READ_IMPLIES_EXEC tasks as their VMA permissions might
|
|
* conflict with the enclave page permissions.
|
|
*/
|
|
if (current->personality & READ_IMPLIES_EXEC)
|
|
return -EACCES;
|
|
|
|
mutex_lock(&encl->lock);
|
|
xas_lock(&xas);
|
|
xas_for_each(&xas, page, PFN_DOWN(end - 1)) {
|
|
if (~page->vm_max_prot_bits & vm_prot_bits) {
|
|
ret = -EACCES;
|
|
break;
|
|
}
|
|
|
|
/* Reschedule on every XA_CHECK_SCHED iteration. */
|
|
if (!(++count % XA_CHECK_SCHED)) {
|
|
xas_pause(&xas);
|
|
xas_unlock(&xas);
|
|
mutex_unlock(&encl->lock);
|
|
|
|
cond_resched();
|
|
|
|
mutex_lock(&encl->lock);
|
|
xas_lock(&xas);
|
|
}
|
|
}
|
|
xas_unlock(&xas);
|
|
mutex_unlock(&encl->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int sgx_vma_mprotect(struct vm_area_struct *vma, unsigned long start,
|
|
unsigned long end, unsigned long newflags)
|
|
{
|
|
return sgx_encl_may_map(vma->vm_private_data, start, end, newflags);
|
|
}
|
|
|
|
static int sgx_encl_debug_read(struct sgx_encl *encl, struct sgx_encl_page *page,
|
|
unsigned long addr, void *data)
|
|
{
|
|
unsigned long offset = addr & ~PAGE_MASK;
|
|
int ret;
|
|
|
|
|
|
ret = __edbgrd(sgx_get_epc_virt_addr(page->epc_page) + offset, data);
|
|
if (ret)
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sgx_encl_debug_write(struct sgx_encl *encl, struct sgx_encl_page *page,
|
|
unsigned long addr, void *data)
|
|
{
|
|
unsigned long offset = addr & ~PAGE_MASK;
|
|
int ret;
|
|
|
|
ret = __edbgwr(sgx_get_epc_virt_addr(page->epc_page) + offset, data);
|
|
if (ret)
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Load an enclave page to EPC if required, and take encl->lock.
|
|
*/
|
|
static struct sgx_encl_page *sgx_encl_reserve_page(struct sgx_encl *encl,
|
|
unsigned long addr,
|
|
unsigned long vm_flags)
|
|
{
|
|
struct sgx_encl_page *entry;
|
|
|
|
for ( ; ; ) {
|
|
mutex_lock(&encl->lock);
|
|
|
|
entry = sgx_encl_load_page(encl, addr, vm_flags);
|
|
if (PTR_ERR(entry) != -EBUSY)
|
|
break;
|
|
|
|
mutex_unlock(&encl->lock);
|
|
}
|
|
|
|
if (IS_ERR(entry))
|
|
mutex_unlock(&encl->lock);
|
|
|
|
return entry;
|
|
}
|
|
|
|
static int sgx_vma_access(struct vm_area_struct *vma, unsigned long addr,
|
|
void *buf, int len, int write)
|
|
{
|
|
struct sgx_encl *encl = vma->vm_private_data;
|
|
struct sgx_encl_page *entry = NULL;
|
|
char data[sizeof(unsigned long)];
|
|
unsigned long align;
|
|
int offset;
|
|
int cnt;
|
|
int ret = 0;
|
|
int i;
|
|
|
|
/*
|
|
* If process was forked, VMA is still there but vm_private_data is set
|
|
* to NULL.
|
|
*/
|
|
if (!encl)
|
|
return -EFAULT;
|
|
|
|
if (!test_bit(SGX_ENCL_DEBUG, &encl->flags))
|
|
return -EFAULT;
|
|
|
|
for (i = 0; i < len; i += cnt) {
|
|
entry = sgx_encl_reserve_page(encl, (addr + i) & PAGE_MASK,
|
|
vma->vm_flags);
|
|
if (IS_ERR(entry)) {
|
|
ret = PTR_ERR(entry);
|
|
break;
|
|
}
|
|
|
|
align = ALIGN_DOWN(addr + i, sizeof(unsigned long));
|
|
offset = (addr + i) & (sizeof(unsigned long) - 1);
|
|
cnt = sizeof(unsigned long) - offset;
|
|
cnt = min(cnt, len - i);
|
|
|
|
ret = sgx_encl_debug_read(encl, entry, align, data);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (write) {
|
|
memcpy(data + offset, buf + i, cnt);
|
|
ret = sgx_encl_debug_write(encl, entry, align, data);
|
|
if (ret)
|
|
goto out;
|
|
} else {
|
|
memcpy(buf + i, data + offset, cnt);
|
|
}
|
|
|
|
out:
|
|
mutex_unlock(&encl->lock);
|
|
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
return ret < 0 ? ret : i;
|
|
}
|
|
|
|
const struct vm_operations_struct sgx_vm_ops = {
|
|
.fault = sgx_vma_fault,
|
|
.mprotect = sgx_vma_mprotect,
|
|
.open = sgx_vma_open,
|
|
.access = sgx_vma_access,
|
|
};
|
|
|
|
/**
|
|
* sgx_encl_release - Destroy an enclave instance
|
|
* @ref: address of a kref inside &sgx_encl
|
|
*
|
|
* Used together with kref_put(). Frees all the resources associated with the
|
|
* enclave and the instance itself.
|
|
*/
|
|
void sgx_encl_release(struct kref *ref)
|
|
{
|
|
struct sgx_encl *encl = container_of(ref, struct sgx_encl, refcount);
|
|
unsigned long max_page_index = PFN_DOWN(encl->base + encl->size - 1);
|
|
struct sgx_va_page *va_page;
|
|
struct sgx_encl_page *entry;
|
|
unsigned long count = 0;
|
|
|
|
XA_STATE(xas, &encl->page_array, PFN_DOWN(encl->base));
|
|
|
|
xas_lock(&xas);
|
|
xas_for_each(&xas, entry, max_page_index) {
|
|
if (entry->epc_page) {
|
|
/*
|
|
* The page and its radix tree entry cannot be freed
|
|
* if the page is being held by the reclaimer.
|
|
*/
|
|
if (sgx_unmark_page_reclaimable(entry->epc_page))
|
|
continue;
|
|
|
|
sgx_encl_free_epc_page(entry->epc_page);
|
|
encl->secs_child_cnt--;
|
|
entry->epc_page = NULL;
|
|
}
|
|
|
|
kfree(entry);
|
|
/*
|
|
* Invoke scheduler on every XA_CHECK_SCHED iteration
|
|
* to prevent soft lockups.
|
|
*/
|
|
if (!(++count % XA_CHECK_SCHED)) {
|
|
xas_pause(&xas);
|
|
xas_unlock(&xas);
|
|
|
|
cond_resched();
|
|
|
|
xas_lock(&xas);
|
|
}
|
|
}
|
|
xas_unlock(&xas);
|
|
|
|
xa_destroy(&encl->page_array);
|
|
|
|
if (!encl->secs_child_cnt && encl->secs.epc_page) {
|
|
sgx_encl_free_epc_page(encl->secs.epc_page);
|
|
encl->secs.epc_page = NULL;
|
|
}
|
|
|
|
while (!list_empty(&encl->va_pages)) {
|
|
va_page = list_first_entry(&encl->va_pages, struct sgx_va_page,
|
|
list);
|
|
list_del(&va_page->list);
|
|
sgx_encl_free_epc_page(va_page->epc_page);
|
|
kfree(va_page);
|
|
}
|
|
|
|
if (encl->backing)
|
|
fput(encl->backing);
|
|
|
|
cleanup_srcu_struct(&encl->srcu);
|
|
|
|
WARN_ON_ONCE(!list_empty(&encl->mm_list));
|
|
|
|
/* Detect EPC page leak's. */
|
|
WARN_ON_ONCE(encl->secs_child_cnt);
|
|
WARN_ON_ONCE(encl->secs.epc_page);
|
|
|
|
kfree(encl);
|
|
}
|
|
|
|
/*
|
|
* 'mm' is exiting and no longer needs mmu notifications.
|
|
*/
|
|
static void sgx_mmu_notifier_release(struct mmu_notifier *mn,
|
|
struct mm_struct *mm)
|
|
{
|
|
struct sgx_encl_mm *encl_mm = container_of(mn, struct sgx_encl_mm, mmu_notifier);
|
|
struct sgx_encl_mm *tmp = NULL;
|
|
|
|
/*
|
|
* The enclave itself can remove encl_mm. Note, objects can't be moved
|
|
* off an RCU protected list, but deletion is ok.
|
|
*/
|
|
spin_lock(&encl_mm->encl->mm_lock);
|
|
list_for_each_entry(tmp, &encl_mm->encl->mm_list, list) {
|
|
if (tmp == encl_mm) {
|
|
list_del_rcu(&encl_mm->list);
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock(&encl_mm->encl->mm_lock);
|
|
|
|
if (tmp == encl_mm) {
|
|
synchronize_srcu(&encl_mm->encl->srcu);
|
|
mmu_notifier_put(mn);
|
|
}
|
|
}
|
|
|
|
static void sgx_mmu_notifier_free(struct mmu_notifier *mn)
|
|
{
|
|
struct sgx_encl_mm *encl_mm = container_of(mn, struct sgx_encl_mm, mmu_notifier);
|
|
|
|
/* 'encl_mm' is going away, put encl_mm->encl reference: */
|
|
kref_put(&encl_mm->encl->refcount, sgx_encl_release);
|
|
|
|
kfree(encl_mm);
|
|
}
|
|
|
|
static const struct mmu_notifier_ops sgx_mmu_notifier_ops = {
|
|
.release = sgx_mmu_notifier_release,
|
|
.free_notifier = sgx_mmu_notifier_free,
|
|
};
|
|
|
|
static struct sgx_encl_mm *sgx_encl_find_mm(struct sgx_encl *encl,
|
|
struct mm_struct *mm)
|
|
{
|
|
struct sgx_encl_mm *encl_mm = NULL;
|
|
struct sgx_encl_mm *tmp;
|
|
int idx;
|
|
|
|
idx = srcu_read_lock(&encl->srcu);
|
|
|
|
list_for_each_entry_rcu(tmp, &encl->mm_list, list) {
|
|
if (tmp->mm == mm) {
|
|
encl_mm = tmp;
|
|
break;
|
|
}
|
|
}
|
|
|
|
srcu_read_unlock(&encl->srcu, idx);
|
|
|
|
return encl_mm;
|
|
}
|
|
|
|
int sgx_encl_mm_add(struct sgx_encl *encl, struct mm_struct *mm)
|
|
{
|
|
struct sgx_encl_mm *encl_mm;
|
|
int ret;
|
|
|
|
/*
|
|
* Even though a single enclave may be mapped into an mm more than once,
|
|
* each 'mm' only appears once on encl->mm_list. This is guaranteed by
|
|
* holding the mm's mmap lock for write before an mm can be added or
|
|
* remove to an encl->mm_list.
|
|
*/
|
|
mmap_assert_write_locked(mm);
|
|
|
|
/*
|
|
* It's possible that an entry already exists in the mm_list, because it
|
|
* is removed only on VFS release or process exit.
|
|
*/
|
|
if (sgx_encl_find_mm(encl, mm))
|
|
return 0;
|
|
|
|
encl_mm = kzalloc(sizeof(*encl_mm), GFP_KERNEL);
|
|
if (!encl_mm)
|
|
return -ENOMEM;
|
|
|
|
/* Grab a refcount for the encl_mm->encl reference: */
|
|
kref_get(&encl->refcount);
|
|
encl_mm->encl = encl;
|
|
encl_mm->mm = mm;
|
|
encl_mm->mmu_notifier.ops = &sgx_mmu_notifier_ops;
|
|
|
|
ret = __mmu_notifier_register(&encl_mm->mmu_notifier, mm);
|
|
if (ret) {
|
|
kfree(encl_mm);
|
|
return ret;
|
|
}
|
|
|
|
spin_lock(&encl->mm_lock);
|
|
list_add_rcu(&encl_mm->list, &encl->mm_list);
|
|
/* Pairs with smp_rmb() in sgx_reclaimer_block(). */
|
|
smp_wmb();
|
|
encl->mm_list_version++;
|
|
spin_unlock(&encl->mm_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct page *sgx_encl_get_backing_page(struct sgx_encl *encl,
|
|
pgoff_t index)
|
|
{
|
|
struct inode *inode = encl->backing->f_path.dentry->d_inode;
|
|
struct address_space *mapping = inode->i_mapping;
|
|
gfp_t gfpmask = mapping_gfp_mask(mapping);
|
|
|
|
return shmem_read_mapping_page_gfp(mapping, index, gfpmask);
|
|
}
|
|
|
|
/**
|
|
* sgx_encl_get_backing() - Pin the backing storage
|
|
* @encl: an enclave pointer
|
|
* @page_index: enclave page index
|
|
* @backing: data for accessing backing storage for the page
|
|
*
|
|
* Pin the backing storage pages for storing the encrypted contents and Paging
|
|
* Crypto MetaData (PCMD) of an enclave page.
|
|
*
|
|
* Return:
|
|
* 0 on success,
|
|
* -errno otherwise.
|
|
*/
|
|
static int sgx_encl_get_backing(struct sgx_encl *encl, unsigned long page_index,
|
|
struct sgx_backing *backing)
|
|
{
|
|
pgoff_t page_pcmd_off = sgx_encl_get_backing_page_pcmd_offset(encl, page_index);
|
|
struct page *contents;
|
|
struct page *pcmd;
|
|
|
|
contents = sgx_encl_get_backing_page(encl, page_index);
|
|
if (IS_ERR(contents))
|
|
return PTR_ERR(contents);
|
|
|
|
pcmd = sgx_encl_get_backing_page(encl, PFN_DOWN(page_pcmd_off));
|
|
if (IS_ERR(pcmd)) {
|
|
put_page(contents);
|
|
return PTR_ERR(pcmd);
|
|
}
|
|
|
|
backing->page_index = page_index;
|
|
backing->contents = contents;
|
|
backing->pcmd = pcmd;
|
|
backing->pcmd_offset = page_pcmd_off & (PAGE_SIZE - 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* When called from ksgxd, returns the mem_cgroup of a struct mm stored
|
|
* in the enclave's mm_list. When not called from ksgxd, just returns
|
|
* the mem_cgroup of the current task.
|
|
*/
|
|
static struct mem_cgroup *sgx_encl_get_mem_cgroup(struct sgx_encl *encl)
|
|
{
|
|
struct mem_cgroup *memcg = NULL;
|
|
struct sgx_encl_mm *encl_mm;
|
|
int idx;
|
|
|
|
/*
|
|
* If called from normal task context, return the mem_cgroup
|
|
* of the current task's mm. The remainder of the handling is for
|
|
* ksgxd.
|
|
*/
|
|
if (!current_is_ksgxd())
|
|
return get_mem_cgroup_from_mm(current->mm);
|
|
|
|
/*
|
|
* Search the enclave's mm_list to find an mm associated with
|
|
* this enclave to charge the allocation to.
|
|
*/
|
|
idx = srcu_read_lock(&encl->srcu);
|
|
|
|
list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
|
|
if (!mmget_not_zero(encl_mm->mm))
|
|
continue;
|
|
|
|
memcg = get_mem_cgroup_from_mm(encl_mm->mm);
|
|
|
|
mmput_async(encl_mm->mm);
|
|
|
|
break;
|
|
}
|
|
|
|
srcu_read_unlock(&encl->srcu, idx);
|
|
|
|
/*
|
|
* In the rare case that there isn't an mm associated with
|
|
* the enclave, set memcg to the current active mem_cgroup.
|
|
* This will be the root mem_cgroup if there is no active
|
|
* mem_cgroup.
|
|
*/
|
|
if (!memcg)
|
|
return get_mem_cgroup_from_mm(NULL);
|
|
|
|
return memcg;
|
|
}
|
|
|
|
/**
|
|
* sgx_encl_alloc_backing() - allocate a new backing storage page
|
|
* @encl: an enclave pointer
|
|
* @page_index: enclave page index
|
|
* @backing: data for accessing backing storage for the page
|
|
*
|
|
* When called from ksgxd, sets the active memcg from one of the
|
|
* mms in the enclave's mm_list prior to any backing page allocation,
|
|
* in order to ensure that shmem page allocations are charged to the
|
|
* enclave.
|
|
*
|
|
* Return:
|
|
* 0 on success,
|
|
* -errno otherwise.
|
|
*/
|
|
int sgx_encl_alloc_backing(struct sgx_encl *encl, unsigned long page_index,
|
|
struct sgx_backing *backing)
|
|
{
|
|
struct mem_cgroup *encl_memcg = sgx_encl_get_mem_cgroup(encl);
|
|
struct mem_cgroup *memcg = set_active_memcg(encl_memcg);
|
|
int ret;
|
|
|
|
ret = sgx_encl_get_backing(encl, page_index, backing);
|
|
|
|
set_active_memcg(memcg);
|
|
mem_cgroup_put(encl_memcg);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* sgx_encl_lookup_backing() - retrieve an existing backing storage page
|
|
* @encl: an enclave pointer
|
|
* @page_index: enclave page index
|
|
* @backing: data for accessing backing storage for the page
|
|
*
|
|
* Retrieve a backing page for loading data back into an EPC page with ELDU.
|
|
* It is the caller's responsibility to ensure that it is appropriate to use
|
|
* sgx_encl_lookup_backing() rather than sgx_encl_alloc_backing(). If lookup is
|
|
* not used correctly, this will cause an allocation which is not accounted for.
|
|
*
|
|
* Return:
|
|
* 0 on success,
|
|
* -errno otherwise.
|
|
*/
|
|
int sgx_encl_lookup_backing(struct sgx_encl *encl, unsigned long page_index,
|
|
struct sgx_backing *backing)
|
|
{
|
|
return sgx_encl_get_backing(encl, page_index, backing);
|
|
}
|
|
|
|
/**
|
|
* sgx_encl_put_backing() - Unpin the backing storage
|
|
* @backing: data for accessing backing storage for the page
|
|
*/
|
|
void sgx_encl_put_backing(struct sgx_backing *backing)
|
|
{
|
|
put_page(backing->pcmd);
|
|
put_page(backing->contents);
|
|
}
|
|
|
|
static int sgx_encl_test_and_clear_young_cb(pte_t *ptep, unsigned long addr,
|
|
void *data)
|
|
{
|
|
pte_t pte;
|
|
int ret;
|
|
|
|
ret = pte_young(*ptep);
|
|
if (ret) {
|
|
pte = pte_mkold(*ptep);
|
|
set_pte_at((struct mm_struct *)data, addr, ptep, pte);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* sgx_encl_test_and_clear_young() - Test and reset the accessed bit
|
|
* @mm: mm_struct that is checked
|
|
* @page: enclave page to be tested for recent access
|
|
*
|
|
* Checks the Access (A) bit from the PTE corresponding to the enclave page and
|
|
* clears it.
|
|
*
|
|
* Return: 1 if the page has been recently accessed and 0 if not.
|
|
*/
|
|
int sgx_encl_test_and_clear_young(struct mm_struct *mm,
|
|
struct sgx_encl_page *page)
|
|
{
|
|
unsigned long addr = page->desc & PAGE_MASK;
|
|
struct sgx_encl *encl = page->encl;
|
|
struct vm_area_struct *vma;
|
|
int ret;
|
|
|
|
ret = sgx_encl_find(mm, addr, &vma);
|
|
if (ret)
|
|
return 0;
|
|
|
|
if (encl != vma->vm_private_data)
|
|
return 0;
|
|
|
|
ret = apply_to_page_range(vma->vm_mm, addr, PAGE_SIZE,
|
|
sgx_encl_test_and_clear_young_cb, vma->vm_mm);
|
|
if (ret < 0)
|
|
return 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* sgx_alloc_va_page() - Allocate a Version Array (VA) page
|
|
*
|
|
* Allocate a free EPC page and convert it to a Version Array (VA) page.
|
|
*
|
|
* Return:
|
|
* a VA page,
|
|
* -errno otherwise
|
|
*/
|
|
struct sgx_epc_page *sgx_alloc_va_page(void)
|
|
{
|
|
struct sgx_epc_page *epc_page;
|
|
int ret;
|
|
|
|
epc_page = sgx_alloc_epc_page(NULL, true);
|
|
if (IS_ERR(epc_page))
|
|
return ERR_CAST(epc_page);
|
|
|
|
ret = __epa(sgx_get_epc_virt_addr(epc_page));
|
|
if (ret) {
|
|
WARN_ONCE(1, "EPA returned %d (0x%x)", ret, ret);
|
|
sgx_encl_free_epc_page(epc_page);
|
|
return ERR_PTR(-EFAULT);
|
|
}
|
|
|
|
return epc_page;
|
|
}
|
|
|
|
/**
|
|
* sgx_alloc_va_slot - allocate a VA slot
|
|
* @va_page: a &struct sgx_va_page instance
|
|
*
|
|
* Allocates a slot from a &struct sgx_va_page instance.
|
|
*
|
|
* Return: offset of the slot inside the VA page
|
|
*/
|
|
unsigned int sgx_alloc_va_slot(struct sgx_va_page *va_page)
|
|
{
|
|
int slot = find_first_zero_bit(va_page->slots, SGX_VA_SLOT_COUNT);
|
|
|
|
if (slot < SGX_VA_SLOT_COUNT)
|
|
set_bit(slot, va_page->slots);
|
|
|
|
return slot << 3;
|
|
}
|
|
|
|
/**
|
|
* sgx_free_va_slot - free a VA slot
|
|
* @va_page: a &struct sgx_va_page instance
|
|
* @offset: offset of the slot inside the VA page
|
|
*
|
|
* Frees a slot from a &struct sgx_va_page instance.
|
|
*/
|
|
void sgx_free_va_slot(struct sgx_va_page *va_page, unsigned int offset)
|
|
{
|
|
clear_bit(offset >> 3, va_page->slots);
|
|
}
|
|
|
|
/**
|
|
* sgx_va_page_full - is the VA page full?
|
|
* @va_page: a &struct sgx_va_page instance
|
|
*
|
|
* Return: true if all slots have been taken
|
|
*/
|
|
bool sgx_va_page_full(struct sgx_va_page *va_page)
|
|
{
|
|
int slot = find_first_zero_bit(va_page->slots, SGX_VA_SLOT_COUNT);
|
|
|
|
return slot == SGX_VA_SLOT_COUNT;
|
|
}
|
|
|
|
/**
|
|
* sgx_encl_free_epc_page - free an EPC page assigned to an enclave
|
|
* @page: EPC page to be freed
|
|
*
|
|
* Free an EPC page assigned to an enclave. It does EREMOVE for the page, and
|
|
* only upon success, it puts the page back to free page list. Otherwise, it
|
|
* gives a WARNING to indicate page is leaked.
|
|
*/
|
|
void sgx_encl_free_epc_page(struct sgx_epc_page *page)
|
|
{
|
|
int ret;
|
|
|
|
WARN_ON_ONCE(page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED);
|
|
|
|
ret = __eremove(sgx_get_epc_virt_addr(page));
|
|
if (WARN_ONCE(ret, EREMOVE_ERROR_MESSAGE, ret, ret))
|
|
return;
|
|
|
|
sgx_free_epc_page(page);
|
|
}
|